Abstract

A photoelectric attachment for conventional types of visual precision polarimeters, utilizing the “method of symmetrical angles,” has been developed, and its performance characteristics have been analyzed. A comparison of the precision of the photoelectric and visual observations indicates that they are of the same order when the mercury 546.1 mμ and sodium 589.25 mμ lines are used, provided that large apertures and high light transmission of samples can be maintained, and provided that the visual observations are made in a darkroom with a dark-adapted eye. In the case of micro and semimicro observations and samples of low light transmission, the photoelectric method yields a precision up to one order higher than that of visual measurements, with the additional benefits of reducing operator eye fatigue and eliminating the necessity of a darkroom.

Methods of compensating for photometer drift, polarization effects in photomultiplier tubes, and high light absorption of samples are explained and an analysis of the problem of the optimum symmetrical angle is made.

Errors in quartz control plate measurements indicate that more rigid specifications for color filters to be used with the sodium and mercury lamps must be developed to assure readings which agree with quartz control plate calibration values.

© 1955 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Bates and Associates, “Polarimetry, Saccharimetry and the Sugars” Natl. Bur. Standards Circular C-440 (1942).
  2. C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (John Wiley and Sons, Inc., New York, 1941).
  3. W. Heller in Weissberger’s Physical Methods of Organic Chemistry edited by A. Weissberger (Interscience Publishers, Inc., New York, 1946) Vol. II, Chapt. XIX.
  4. H. Landolt, The Optical Rotating Power of Organic Substances (Chemical Publishing Company, Inc., Brooklyn, New York, 1902), second edition, p. 340.
  5. H. Von Halban and K. Siedentopf, Ger. Pat.386,537 (1922); cited from reference 3.
  6. J. Kenyon, Nature 117, 304 (1926).
    [Crossref]
  7. S. Strelkow, Bull. Sugar Trust (Russia) 2, 55 (1926) cited from reference 17; Intern. Sugar J. 29, 544–547 (1927).
  8. V. L. Stanek and K. Sandera, Z. Zuckerind. cechoslovak. Rep. 51, 245 (1927); cited from reference 17.
  9. G. Todesco, Nuovo cimento 5, 376 (1928), cited from reference 3.
    [Crossref]
  10. G. Bruhat and P. Chatelain, Rev. optique 12, 1 (1933); cited from reference 3.
  11. G. Bruhat and A. Guinier, Rev. optique,  12, 396 (1933); cited from reference 3.
  12. O. Schönrock and E. Einsporn, Physik. Z. 37, 1 (1936).
  13. E. Landt and H. Hirschmüller, Deut. Zuckerind. 28, 647 (1937).
  14. O. Spengler and H. Hirschmüller, Z. Wirtschafftsgruppe Zuckerind. 90, 426 (1940).
  15. W. R. Brode and C. H. Jones, J. Opt. Soc. Am. 31, 743 (1941).
    [Crossref]
  16. W. F. Peck, U. S. Patent No. 2,351,539 (1941).
  17. Two Graduate Theses by A. Spell (1943) and W. H. Dyre (1948) under T. B. Crumpler, Tulane University.
  18. W. O. Bernhardt, Proc. Am. Soc. Sugar Beet Technol.547 (1948).
  19. Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
    [Crossref]
  20. Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
    [Crossref]
  21. M. J. Walker and R. C. Raymond, J. Opt. Soc. Am. 40, 766 (1950).
    [Crossref]
  22. L. R. Ingersoll, Technical Report on Contract Nour 07100, University of Wisconsin (1951).
  23. P. J. Fopiano and M. B. Trageser, Thesis under A. C. Hardy, Massachusetts Institute of Technology (1951).
  24. P. R. Camp and R. C. Raymond, J. Opt. Soc. Am. 42, 237 (1952).
    [Crossref]
  25. A. Keston and J. Laspalluto, Federation Proc. 12, 229 (1953).
  26. Von W. Broser and W. Lautsch, Z. Naturforsch. 6b, 369 (1951).
  27. S. Mitchell and J. Veitch, Nature 168 (1951).
    [Crossref]
  28. Brice, Halwer, and Speiser, J. Opt. Soc. Am. 40, 768 (1950).
    [Crossref]
  29. E. P. Clancy, J. Opt. Soc. Am. 42, 357 (1952).
    [Crossref]
  30. Bates, Phelps, and Snyder in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. II, pp. 334–355.
  31. T. M. Lowry in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. VII, pp. 355–488.

1953 (1)

A. Keston and J. Laspalluto, Federation Proc. 12, 229 (1953).

1952 (2)

1951 (2)

Von W. Broser and W. Lautsch, Z. Naturforsch. 6b, 369 (1951).

S. Mitchell and J. Veitch, Nature 168 (1951).
[Crossref]

1950 (4)

Brice, Halwer, and Speiser, J. Opt. Soc. Am. 40, 768 (1950).
[Crossref]

Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
[Crossref]

Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
[Crossref]

M. J. Walker and R. C. Raymond, J. Opt. Soc. Am. 40, 766 (1950).
[Crossref]

1948 (1)

W. O. Bernhardt, Proc. Am. Soc. Sugar Beet Technol.547 (1948).

1942 (1)

F. J. Bates and Associates, “Polarimetry, Saccharimetry and the Sugars” Natl. Bur. Standards Circular C-440 (1942).

1941 (1)

1940 (1)

O. Spengler and H. Hirschmüller, Z. Wirtschafftsgruppe Zuckerind. 90, 426 (1940).

1937 (1)

E. Landt and H. Hirschmüller, Deut. Zuckerind. 28, 647 (1937).

1936 (1)

O. Schönrock and E. Einsporn, Physik. Z. 37, 1 (1936).

1933 (2)

G. Bruhat and P. Chatelain, Rev. optique 12, 1 (1933); cited from reference 3.

G. Bruhat and A. Guinier, Rev. optique,  12, 396 (1933); cited from reference 3.

1928 (1)

G. Todesco, Nuovo cimento 5, 376 (1928), cited from reference 3.
[Crossref]

1927 (1)

V. L. Stanek and K. Sandera, Z. Zuckerind. cechoslovak. Rep. 51, 245 (1927); cited from reference 17.

1926 (2)

J. Kenyon, Nature 117, 304 (1926).
[Crossref]

S. Strelkow, Bull. Sugar Trust (Russia) 2, 55 (1926) cited from reference 17; Intern. Sugar J. 29, 544–547 (1927).

Bates,

Bates, Phelps, and Snyder in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. II, pp. 334–355.

Bates, F. J.

F. J. Bates and Associates, “Polarimetry, Saccharimetry and the Sugars” Natl. Bur. Standards Circular C-440 (1942).

Bernhardt, W. O.

W. O. Bernhardt, Proc. Am. Soc. Sugar Beet Technol.547 (1948).

Brice,

Brode, W. R.

Broser, Von W.

Von W. Broser and W. Lautsch, Z. Naturforsch. 6b, 369 (1951).

Browne, C. A.

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (John Wiley and Sons, Inc., New York, 1941).

Bruhat, G.

G. Bruhat and P. Chatelain, Rev. optique 12, 1 (1933); cited from reference 3.

G. Bruhat and A. Guinier, Rev. optique,  12, 396 (1933); cited from reference 3.

Camp, P. R.

Chatelain, P.

G. Bruhat and P. Chatelain, Rev. optique 12, 1 (1933); cited from reference 3.

Clancy, E. P.

Einsporn, E.

O. Schönrock and E. Einsporn, Physik. Z. 37, 1 (1936).

Fergus,

Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
[Crossref]

Fopiano, P. J.

P. J. Fopiano and M. B. Trageser, Thesis under A. C. Hardy, Massachusetts Institute of Technology (1951).

Guinier, A.

G. Bruhat and A. Guinier, Rev. optique,  12, 396 (1933); cited from reference 3.

Halwer,

Hardy, A. C.

P. J. Fopiano and M. B. Trageser, Thesis under A. C. Hardy, Massachusetts Institute of Technology (1951).

Heller, W.

W. Heller in Weissberger’s Physical Methods of Organic Chemistry edited by A. Weissberger (Interscience Publishers, Inc., New York, 1946) Vol. II, Chapt. XIX.

Hirschmüller, H.

O. Spengler and H. Hirschmüller, Z. Wirtschafftsgruppe Zuckerind. 90, 426 (1940).

E. Landt and H. Hirschmüller, Deut. Zuckerind. 28, 647 (1937).

Ingersoll, L. R.

L. R. Ingersoll, Technical Report on Contract Nour 07100, University of Wisconsin (1951).

Jones, C. H.

Kenyon, J.

J. Kenyon, Nature 117, 304 (1926).
[Crossref]

Keston, A.

A. Keston and J. Laspalluto, Federation Proc. 12, 229 (1953).

Landolt, H.

H. Landolt, The Optical Rotating Power of Organic Substances (Chemical Publishing Company, Inc., Brooklyn, New York, 1902), second edition, p. 340.

Landt, E.

E. Landt and H. Hirschmüller, Deut. Zuckerind. 28, 647 (1937).

Laspalluto, J.

A. Keston and J. Laspalluto, Federation Proc. 12, 229 (1953).

Lautsch, W.

Von W. Broser and W. Lautsch, Z. Naturforsch. 6b, 369 (1951).

Levy,

Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
[Crossref]

Light,

Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
[Crossref]

Lowry, T. M.

T. M. Lowry in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. VII, pp. 355–488.

Mitchell, S.

S. Mitchell and J. Veitch, Nature 168 (1951).
[Crossref]

Peck, W. F.

W. F. Peck, U. S. Patent No. 2,351,539 (1941).

Phelps,

Bates, Phelps, and Snyder in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. II, pp. 334–355.

Rank,

Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
[Crossref]

Raymond, R. C.

Sandera, K.

V. L. Stanek and K. Sandera, Z. Zuckerind. cechoslovak. Rep. 51, 245 (1927); cited from reference 17.

Schönrock, O.

O. Schönrock and E. Einsporn, Physik. Z. 37, 1 (1936).

Schwed,

Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
[Crossref]

Siedentopf, K.

H. Von Halban and K. Siedentopf, Ger. Pat.386,537 (1922); cited from reference 3.

Snyder,

Bates, Phelps, and Snyder in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. II, pp. 334–355.

Speiser,

Spell, A.

Two Graduate Theses by A. Spell (1943) and W. H. Dyre (1948) under T. B. Crumpler, Tulane University.

Spengler, O.

O. Spengler and H. Hirschmüller, Z. Wirtschafftsgruppe Zuckerind. 90, 426 (1940).

Stanek, V. L.

V. L. Stanek and K. Sandera, Z. Zuckerind. cechoslovak. Rep. 51, 245 (1927); cited from reference 17.

Strelkow, S.

S. Strelkow, Bull. Sugar Trust (Russia) 2, 55 (1926) cited from reference 17; Intern. Sugar J. 29, 544–547 (1927).

Todesco, G.

G. Todesco, Nuovo cimento 5, 376 (1928), cited from reference 3.
[Crossref]

Trageser, M. B.

P. J. Fopiano and M. B. Trageser, Thesis under A. C. Hardy, Massachusetts Institute of Technology (1951).

Veitch, J.

S. Mitchell and J. Veitch, Nature 168 (1951).
[Crossref]

Von Halban, H.

H. Von Halban and K. Siedentopf, Ger. Pat.386,537 (1922); cited from reference 3.

Walker, M. J.

Yoder,

Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
[Crossref]

Zerban, F. W.

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (John Wiley and Sons, Inc., New York, 1941).

Bull. Sugar Trust (Russia) (1)

S. Strelkow, Bull. Sugar Trust (Russia) 2, 55 (1926) cited from reference 17; Intern. Sugar J. 29, 544–547 (1927).

Deut. Zuckerind. (1)

E. Landt and H. Hirschmüller, Deut. Zuckerind. 28, 647 (1937).

Federation Proc. (1)

A. Keston and J. Laspalluto, Federation Proc. 12, 229 (1953).

J. Opt. Soc. Am. (5)

J. Sci. Instr. (1)

Rank, Light, and Yoder, J. Sci. Instr. 27, 270 (1950).
[Crossref]

Natl. Bur. Standards Circular C-440 (1)

F. J. Bates and Associates, “Polarimetry, Saccharimetry and the Sugars” Natl. Bur. Standards Circular C-440 (1942).

Nature (2)

J. Kenyon, Nature 117, 304 (1926).
[Crossref]

S. Mitchell and J. Veitch, Nature 168 (1951).
[Crossref]

Nuovo cimento (1)

G. Todesco, Nuovo cimento 5, 376 (1928), cited from reference 3.
[Crossref]

Physik. Z. (1)

O. Schönrock and E. Einsporn, Physik. Z. 37, 1 (1936).

Proc. Am. Soc. Sugar Beet Technol. (1)

W. O. Bernhardt, Proc. Am. Soc. Sugar Beet Technol.547 (1948).

Rev. optique (2)

G. Bruhat and P. Chatelain, Rev. optique 12, 1 (1933); cited from reference 3.

G. Bruhat and A. Guinier, Rev. optique,  12, 396 (1933); cited from reference 3.

Rev. Sci. Instr. (1)

Levy, Schwed, and Fergus, Rev. Sci. Instr. 21, 693 (1950).
[Crossref]

Z. Naturforsch. (1)

Von W. Broser and W. Lautsch, Z. Naturforsch. 6b, 369 (1951).

Z. Wirtschafftsgruppe Zuckerind. (1)

O. Spengler and H. Hirschmüller, Z. Wirtschafftsgruppe Zuckerind. 90, 426 (1940).

Z. Zuckerind. cechoslovak. Rep. (1)

V. L. Stanek and K. Sandera, Z. Zuckerind. cechoslovak. Rep. 51, 245 (1927); cited from reference 17.

Other (10)

C. A. Browne and F. W. Zerban, Physical and Chemical Methods of Sugar Analysis (John Wiley and Sons, Inc., New York, 1941).

W. Heller in Weissberger’s Physical Methods of Organic Chemistry edited by A. Weissberger (Interscience Publishers, Inc., New York, 1946) Vol. II, Chapt. XIX.

H. Landolt, The Optical Rotating Power of Organic Substances (Chemical Publishing Company, Inc., Brooklyn, New York, 1902), second edition, p. 340.

H. Von Halban and K. Siedentopf, Ger. Pat.386,537 (1922); cited from reference 3.

W. F. Peck, U. S. Patent No. 2,351,539 (1941).

Two Graduate Theses by A. Spell (1943) and W. H. Dyre (1948) under T. B. Crumpler, Tulane University.

L. R. Ingersoll, Technical Report on Contract Nour 07100, University of Wisconsin (1951).

P. J. Fopiano and M. B. Trageser, Thesis under A. C. Hardy, Massachusetts Institute of Technology (1951).

Bates, Phelps, and Snyder in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. II, pp. 334–355.

T. M. Lowry in International Critical Tables (McGraw-Hill Book Company, Inc., New York), Vol. VII, pp. 355–488.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Precision half-shade polarimeter optical system.

Fig. 2
Fig. 2

Brightness characteristics of Lippich half-shade polarimeter image field. Both curves are sine2 curves. Y1 represents the polarizer portion of the field. Y2 represents the half-shade portion of the field and indicates its lower brightness due to light absorption in the Lippich prism.

Fig. 3
Fig. 3

General principles involved in determining the “extinction point” between crossed polarizers by taking the mean of two “symmetrical angles”.

Fig. 4
Fig. 4

Graphic representation of method of taking readings to compensate for drift in photometer response. R1 to R5 represent actual analyzer settings, in circular degrees, made at a fixed galvanometer deflection and at equal time intervals.

Fig. 5
Fig. 5

Original circuit which was used to make sensitivity determinations.

Fig. 6
Fig. 6

Typical application of the model 200 photoelectric attachment to the model 80 high-precision polarimeter with interchangeable sodium and mercury arc lamps and color filter turret to isolate the 365, 405, 435, 546, 578, and 589 mμ spectral lines forms a convenient and simplified photoelectric spectropolarimeter.

Fig. 7
Fig. 7

Analysis of the model 200 response characteristics with samples of various optical densities to show that the smallest possible symmetrical angles should be used. (A) is a modified sine2 curve representing galvanometer response without sample. (B) is a modified sine2 curve representing galvanometer response with sample of highest permissible density. lA and lB represent minimum allowable slopes of curves (A) and (B) respectively, which will give required precision.

Fig. 8
Fig. 8

Galvanometer scale of current models. The symmetrical angle method involves determination of the extinction point on the upper scale and repeating this setting on the lower scale with symmetrical analyzer settings above and below the extinction point for the light passing through the polarizer and analyzer prisms of the polarimeter.

Fig. 9
Fig. 9

Proposed galvanometer scale to include provision for samples having transmission values down to 0.1 percent

Tables (4)

Tables Icon

Table I Uncertainty and probable errors in visually matching Lippich polarimeter half-shade field.

Tables Icon

Table II Comparison of probable errors of visual and photoelectric methods under ideal conditions. Each probable error value was computed from a series of ten actual determinations of the match point (visual) or the total extinction point (photoelectric-symmetrical angles).

Tables Icon

Table III Probable errors at various optical densities of samples. Each value was computed from five individual determinations unless otherwise indicated by circled number. Light source was G. E. Na-1 sodium lamp and field aperture was 6 mm.

Tables Icon

Table IV Observed errors in quartz control plate readings using the G. E. Na-1 sodium lamp at 115 v ±0.1 percent with various filters and five different polarimeters equipped with the Model 200 photoelectric attachment and 1P21 photomultiplier tube. Each value represents the mean of n determinations using the method of symmetrical angles. The three quartz plates of the lower values were of Schmidt and Haensch origin, ca 1927. The 33.088° plate was of Rudolph manufacture and calibrated at the National Bureau of Standards in 1951.