Abstract

The two main problems facing the designer of varifocal lens systems are compensation for image shift and correction of aberrations for each zoom position. Most designers have chosen the easy and obvious way of compensating for image shift by using mechanical nonlinear cams, gears, and linkages, and have concentrated their efforts on aberrational correction only. The alternative is shift compensation by optical means.

© 1954 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. G. Back, J. Soc. Motion Picture Engrs. 47, 464 (1946).
  2. F. G. Back, J. Soc. Motion Picture Engrs. 49, 57 (1947).
  3. F. G. Back, J. Opt. Soc. Am. 43, 1195 (1953).
    [Crossref]
  4. H. H. Hopkins, A Class of Symmetrical Systems of Variable Power, Proceedings of the London Conference on Optical Instruments, 1950.
  5. F. G. Back, J. Opt. Soc. Am. 43, 1195 (1953).
    [Crossref]
  6. F. G. Back, J. Opt. Soc. Am. 43, 685 (1953).
    [Crossref]

1953 (3)

1947 (1)

F. G. Back, J. Soc. Motion Picture Engrs. 49, 57 (1947).

1946 (1)

F. G. Back, J. Soc. Motion Picture Engrs. 47, 464 (1946).

Back, F. G.

F. G. Back, J. Opt. Soc. Am. 43, 685 (1953).
[Crossref]

F. G. Back, J. Opt. Soc. Am. 43, 1195 (1953).
[Crossref]

F. G. Back, J. Opt. Soc. Am. 43, 1195 (1953).
[Crossref]

F. G. Back, J. Soc. Motion Picture Engrs. 49, 57 (1947).

F. G. Back, J. Soc. Motion Picture Engrs. 47, 464 (1946).

Hopkins, H. H.

H. H. Hopkins, A Class of Symmetrical Systems of Variable Power, Proceedings of the London Conference on Optical Instruments, 1950.

J. Opt. Soc. Am. (3)

J. Soc. Motion Picture Engrs. (2)

F. G. Back, J. Soc. Motion Picture Engrs. 47, 464 (1946).

F. G. Back, J. Soc. Motion Picture Engrs. 49, 57 (1947).

Other (1)

H. H. Hopkins, A Class of Symmetrical Systems of Variable Power, Proceedings of the London Conference on Optical Instruments, 1950.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

F. 1
F. 1

Optical compensation.

F. 2
F. 2

The Zoomar principle.

F. 3
F. 3

Equally spaced compensation points.

F. 4
F. 4

Applications of the Zoomar principle.

F. 5
F. 5

Zoomar-16.

F. 6
F. 6

Definition matrices of Zoomar 16.

F. 7
F. 7

Cuvillier’s Pan-Cinor.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

1 l 0 ( m t ) + 1 F = 1 l 0 m ,
χ E = ( f E 2 / X E ) .
X C = X E d = f E 2 + d X E X E .
X C = f C 2 X C = f C 2 X E f E 2 + d X E .
X O K + Δ m = f C 2 ( X 0 + m ) f E 2 + ( d 0 + m ) ( X 0 + m ) .
Δ = f C 2 ( X 0 + m ) f E 2 + ( d 0 + m ) ( X 0 + m ) f C 2 X 0 f E 2 + d 0 X 0 + m .
Δ = m 3 + [ d 0 + X 0 f C 2 X 0 f E 2 + d 0 X 0 ] m 2 + [ f E 2 + d 0 X 0 + f C 2 ( f E 2 X 0 2 ) f E 2 + d 0 X 0 ] m m 2 + [ d 0 + X 0 ] m + [ f E 2 + d 0 X 0 ] .
Δ = m 3 + a m 2 + b m m 2 + c m + d .
m 3 + a m 2 + b m m 2 + c m + d = Δ ,
b = ( 2 + d 0 X 0 ) f E 2 X 0 2
m Δ = 0 = ± [ X 0 ( 2 + d 0 X 0 ) f E 2 ] 1 2 .
ϕ = f E 2 + d 0 X 0 + ( d 0 + X 0 ) m + m 2 f V f E f C .
d ϕ d m = ( d 0 + X 0 ) + 2 m f V f E f C ,
( d 0 + X 0 ) > m Δ = 0 .