Abstract

A description is given of a comparison method for determining the values of the absorption coefficient k of a metal relative to previously determined values for Ag. In this method transmission interference filters are constructed which have mica as the dielectric and have reflecting layers of Ag and of the metal x being studied. On adjacent areas of a single sheet of mica, pairs of filters are formed, one with a Ag-mica-Ag combination and the other with a Ag-mica-x combination. Components of a filter pair will have identical mica thicknesses. For a given filter pair the wavelengths transmitted by one combination are compared with those transmitted by the other. Values of k are then calculated from the change in phase accompanying the reflection of light at normal incidence at mica-metal interfaces. The method was found to have special advantages in the wavelength region of 0.65μ to 0.95μ for metals with high reflectivities. Results are given for Au, Cu, and Al in the range of 0.45μ to 0.95μ. The new values of k tend to be higher than older values obtained by other methods. A discussion is included concerning the validity of surface measurements for determining the bulk properties of metals.

© 1954 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Schulz, J. Opt. Soc. Am. 41, 1047 (1951).
    [Crossref]
  2. L. G. Schulz and E. J. Scheibner, J. Opt. Soc. Am. 40, 761 (1950).
    [Crossref]
  3. L. G. Schulz, J. Opt. Soc. Am. 41, 261 (1951).
    [Crossref]
  4. L. G. Schulz and F. R. Tangherlini, J. Opt. Soc. Am. 44, 362 (1954).
    [Crossref]
  5. Handbuch der Physik (Verlag Julius Springer, Berlin, 1928), Vol. 20. Chap. 6.
  6. F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1941), Chap. 17.
  7. A. H. Wilson, Theory of Metals (The University Press, Cambridge, 1936), Chap. 3.
  8. N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Oxford University Press, New York, 1936), p. 105.
  9. L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 38, 492 (1948).
  10. Mica is double refracting; therefore the transmission bands are always in pairs with components about 15A apart. The larger wavelength of each pair was arbitrarily selected for use in these experiments.
  11. E. Einsporn, Physik. Z. 37, 83 (1936).
  12. See reference 1. Figure 2 presents the results in the form of k/λ versus λ but without an explicit statement of the k values.
  13. R. Minor, Ann. Physik 10, 581 (1903).
    [Crossref]
  14. G. Hass, Optik 1, 2 (1946).
  15. R. Kretzman, Ann. Physik 37, 303 (1940).
    [Crossref]
  16. W. Meier, Ann. Physik 31, 1017 (1910).
    [Crossref]
  17. A. Tool, Phys. Rev. 31, 1 (1910).
  18. J. B. Nathanson, J. Opt. Soc. Am. 28, 300 (1938).
    [Crossref]
  19. H. O’Bryan, J. Opt. Soc. Am. 26, 122 (1936).
    [Crossref]
  20. K. Försterling and V. Fréedericksz, Ann. Physik 40, 200 (1913).
  21. G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London) A195, 336 (1948).
  22. T. Holstein, Phys. Rev. 88, 1427 (1952).
    [Crossref]
  23. R. B. Dingle, Physica 19, 311 (1953).
    [Crossref]
  24. To be given later.

1954 (1)

1953 (1)

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

1952 (1)

T. Holstein, Phys. Rev. 88, 1427 (1952).
[Crossref]

1951 (2)

1950 (1)

1948 (2)

G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London) A195, 336 (1948).

L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 38, 492 (1948).

1946 (1)

G. Hass, Optik 1, 2 (1946).

1940 (1)

R. Kretzman, Ann. Physik 37, 303 (1940).
[Crossref]

1938 (1)

1936 (2)

H. O’Bryan, J. Opt. Soc. Am. 26, 122 (1936).
[Crossref]

E. Einsporn, Physik. Z. 37, 83 (1936).

1913 (1)

K. Försterling and V. Fréedericksz, Ann. Physik 40, 200 (1913).

1910 (2)

W. Meier, Ann. Physik 31, 1017 (1910).
[Crossref]

A. Tool, Phys. Rev. 31, 1 (1910).

1903 (1)

R. Minor, Ann. Physik 10, 581 (1903).
[Crossref]

Dennison, D. M.

L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 38, 492 (1948).

Dingle, R. B.

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

Einsporn, E.

E. Einsporn, Physik. Z. 37, 83 (1936).

Försterling, K.

K. Försterling and V. Fréedericksz, Ann. Physik 40, 200 (1913).

Fréedericksz, V.

K. Försterling and V. Fréedericksz, Ann. Physik 40, 200 (1913).

Hadley, L. N.

L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 38, 492 (1948).

Hass, G.

G. Hass, Optik 1, 2 (1946).

Holstein, T.

T. Holstein, Phys. Rev. 88, 1427 (1952).
[Crossref]

Jones, H.

N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Oxford University Press, New York, 1936), p. 105.

Kretzman, R.

R. Kretzman, Ann. Physik 37, 303 (1940).
[Crossref]

Meier, W.

W. Meier, Ann. Physik 31, 1017 (1910).
[Crossref]

Minor, R.

R. Minor, Ann. Physik 10, 581 (1903).
[Crossref]

Mott, N. F.

N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Oxford University Press, New York, 1936), p. 105.

Nathanson, J. B.

O’Bryan, H.

Reuter, G. E. H.

G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London) A195, 336 (1948).

Scheibner, E. J.

Schulz, L. G.

Seitz, F.

F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1941), Chap. 17.

Sondheimer, E. H.

G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London) A195, 336 (1948).

Tangherlini, F. R.

Tool, A.

A. Tool, Phys. Rev. 31, 1 (1910).

Wilson, A. H.

A. H. Wilson, Theory of Metals (The University Press, Cambridge, 1936), Chap. 3.

Ann. Physik (4)

R. Minor, Ann. Physik 10, 581 (1903).
[Crossref]

R. Kretzman, Ann. Physik 37, 303 (1940).
[Crossref]

W. Meier, Ann. Physik 31, 1017 (1910).
[Crossref]

K. Försterling and V. Fréedericksz, Ann. Physik 40, 200 (1913).

J. Opt. Soc. Am. (7)

Optik (1)

G. Hass, Optik 1, 2 (1946).

Phys. Rev. (2)

A. Tool, Phys. Rev. 31, 1 (1910).

T. Holstein, Phys. Rev. 88, 1427 (1952).
[Crossref]

Physica (1)

R. B. Dingle, Physica 19, 311 (1953).
[Crossref]

Physik. Z. (1)

E. Einsporn, Physik. Z. 37, 83 (1936).

Proc. Roy. Soc. (London) (1)

G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc. (London) A195, 336 (1948).

Other (7)

To be given later.

See reference 1. Figure 2 presents the results in the form of k/λ versus λ but without an explicit statement of the k values.

Mica is double refracting; therefore the transmission bands are always in pairs with components about 15A apart. The larger wavelength of each pair was arbitrarily selected for use in these experiments.

Handbuch der Physik (Verlag Julius Springer, Berlin, 1928), Vol. 20. Chap. 6.

F. Seitz, Modern Theory of Solids (McGraw-Hill Book Company, Inc., New York, 1941), Chap. 17.

A. H. Wilson, Theory of Metals (The University Press, Cambridge, 1936), Chap. 3.

N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Oxford University Press, New York, 1936), p. 105.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

F. 1
F. 1

Details of the filter construction and the arrangement for wavelength measurements. Drawing A shows the arrangement of components in a filter pair; B shows how three such pairs were mounted over holes in a sheet of metal. Drawing C indicates how a survey was made of each sample by moving it with respect to the slit S of the spectrograph to a new position for each photograph. In D the discontinuities in the interference bands of the upper filter reveal the presence of cleavage steps in the mica dielectric.

F. 2
F. 2

Graph showing the dispersion of mica. The values shown are for the larger of the two indices of refraction.

F. 3
F. 3

Graph showing the deviation of Δψ of the phase-change angle from the opaque thickness value as the film thickness is varied. For Au the films were usually 500A to 600A thick.

F. 4
F. 4

Values of the absorption coefficient k as a function of wavelength for Ag.

F. 5
F. 5

Values of the absorption coefficient k as a function of wavelength for Au.

F. 6
F. 6

Values of the absorption coefficient k as a function of wavelength for Cu.

F. 7
F. 7

Values of the absorption coefficient k as a function of wavelength for Al.

Tables (2)

Tables Icon

Table I Principal factors in the evaluation of the interference method. The Drude method was taken as the standard for comparison.

Tables Icon

Table II Values of the absorption coefficient k as a function of wavelength for Ag, Au, Cu, and Al.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

2 n 0 I t + ψ Ag I λ I 2 π + ψ Ag I λ I 2 π = N λ I .
2 n 0 II t + ψ Ag II λ II 2 π + ψ x II λ II 2 π = N λ II .
N ( λ II λ I ) [ ψ x II λ II 2 π ψ Ag I λ I 2 π ] = [ ψ Ag II λ II 2 π ψ Ag I λ I 2 π ] + 2 t ( n 0 II n 0 I ) .
tan ψ = 2 k n 0 k 2 + n 2 n 0 2 .