Abstract

Using evaporation conditions adjusted for the deposition of true silicon monoxide, a series of films ranging in thickness from 0.03 to 10 microns was prepared on fused quartz, glass, rock salt, and highly reflecting aluminum surfaces. The optical constants of the films were computed in the wavelength region from 0.24 to 14 microns from reflectance, transmittance, and thickness measurements. Silicon monoxide films exhibit strong absorption in the ultraviolet which extends into the visible, and an infrared absorption maximum at 10 microns which differs significantly from the position of the absorption maximum of fused quartz. In the wavelength region from 0.40 to 0.70 micron, the refractive index of SiO decreases with increasing wavelength from 2.15 to 1.95. Strongly oxidized films show less ultraviolet absorption, lower indexes of refraction, and a shift of the infrared absorption band to shorter wavelength. Decomposition of SiO to Si+ SiO2 results in increased ultraviolet absorption and higher refractive indexes. In the region of the 10-micron absorption a silicon monoxide protective layer of 0.125 micron in thickness has no appreciable effect on the reflectance of a highly reflecting metallic surface, but decreases the transmittance of a rock salt plate by 30 percent.

© 1954 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hass, J. Am. Ceram. Soc. 33, 353 (1950). This paper contains an extensive bibliography on the preparation, structure, and application of silicon monoxide films.
    [Crossref]
  2. Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).
  3. K. F. Bonhoeffer, Z. physik. Chem. 131, 363 (1928).
  4. H. Schäfer and R. Hörnle, Z. anorg. u. allgem. Chem. 263, 261 (1950).
    [Crossref]
  5. Harris, Beasley, and Loeb, J. Opt. Soc. Am. 41, 604 (1951).
    [Crossref]
  6. S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).

1953 (1)

Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).

1951 (1)

1950 (2)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950). This paper contains an extensive bibliography on the preparation, structure, and application of silicon monoxide films.
[Crossref]

H. Schäfer and R. Hörnle, Z. anorg. u. allgem. Chem. 263, 261 (1950).
[Crossref]

1928 (1)

K. F. Bonhoeffer, Z. physik. Chem. 131, 363 (1928).

Beasley,

Bonhoeffer, K. F.

K. F. Bonhoeffer, Z. physik. Chem. 131, 363 (1928).

Harris,

Hass,

Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).

Hass, G.

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950). This paper contains an extensive bibliography on the preparation, structure, and application of silicon monoxide films.
[Crossref]

Hörnle, R.

H. Schäfer and R. Hörnle, Z. anorg. u. allgem. Chem. 263, 261 (1950).
[Crossref]

Loeb,

Schäfer, H.

H. Schäfer and R. Hörnle, Z. anorg. u. allgem. Chem. 263, 261 (1950).
[Crossref]

Schroeder,

Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).

Tolansky, S.

S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).

Turner,

Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).

J. Am. Ceram. Soc. (1)

G. Hass, J. Am. Ceram. Soc. 33, 353 (1950). This paper contains an extensive bibliography on the preparation, structure, and application of silicon monoxide films.
[Crossref]

J. Opt. Soc. Am. (2)

Hass, Schroeder, and Turner, J. Opt. Soc. Am. 43, 326 (1953).

Harris, Beasley, and Loeb, J. Opt. Soc. Am. 41, 604 (1951).
[Crossref]

Z. anorg. u. allgem. Chem. (1)

H. Schäfer and R. Hörnle, Z. anorg. u. allgem. Chem. 263, 261 (1950).
[Crossref]

Z. physik. Chem. (1)

K. F. Bonhoeffer, Z. physik. Chem. 131, 363 (1928).

Other (1)

S. Tolansky, Multiple Beam Interferometry of Surfaces and Films (Clarendon Press, Oxford, 1948).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Transmittance and reflectance of four successively thicker SiO films deposited on fused quartz plates from 0.24 to 1.0 microns.

Fig. 2
Fig. 2

Infrared transmittance and reflectance of four successively thicker SiO films deposited on rock-salt plates.

Fig. 3
Fig. 3

Semilog plots of transmittance vs film thickness used to estimate the absorption coefficient of SiO coatings at different wavelengths.

Fig. 4
Fig. 4

Index of refraction and absorption coefficient of SiO from 0.24 to 1.0 microns.

Fig. 5
Fig. 5

Index of refraction and absorption coefficient of SiO in the infrared.

Fig. 6
Fig. 6

Influence of the SiO evaporation conditions on the optical behavior of a coated fused-quartz plate (a), and a front surface aluminum mirror (b).

Fig. 7
Fig. 7

Effect of oxidation on the infrared behavior of SiO films; oxidation produced by (a) heat treatment in air, (b) slow evaporation in an oxygen atmosphere.

Fig. 8
Fig. 8

Infrared transmittance and reflectance of an SiO2 film on rock salt produced by fuming SiCl4 and baking at 350°C. Dotted line shows the reflectance of a 3 mm thick fused-quartz plate.

Fig. 9
Fig. 9

Effect of decomposition on the optical behavior of SiO; decomposition produced by one hour heat treatment in high vacuum at 850°C.

Fig. 10
Fig. 10

Comparison of the effect of the same SiO film on the reflectance of an aluminum mirror and the reflectance and transmittance of a rock-salt plate.

Fig. 11
Fig. 11

Infrared reflectance of aluminum mirrors protected with three successively thicker SiO films.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R 0 = [ ( n b - 1 ) cos 2 π t λ ( n f + i k f ) + i [ n b n f + i k f - ( n f + i k f ) ] sin 2 π t λ ( n f + i k f ) ] 2 [ ( n b + 1 ) cos 2 π t λ ( n f + i k f ) - i [ n b n f + i k f + ( n f + i k f ) ] sin 2 π t λ ( n f + i k f ) ] 2 , T 0 = 4 n b [ ( n b + 1 ) cos 2 π t λ ( n f + i k f ) - i [ n b n f + i k f + ( n f + i k f ) ] sin 2 π t λ ( n f + i k f ) ] 2 ,
R = ( n - 1 ) 2 + k 2 ( n + 1 ) 2 + k 2 ,
n = 1 + R 1 - R ± [ 4 R ( 1 - R ) 2 - k 2 ] 1 2 .
I = I 0 e - ( 4 π k t / λ )             or             log T ~ - 4 π M k t λ + A .
R 0 = [ ( n b - 1 ) cos 2 π n f t λ + i ( n b n f - n f ) sin 2 π n f t λ ] 2 [ ( n b + 1 ) cos 2 π n f t λ - i ( n b n f + n f ) sin 2 π n f t λ ] 2 , T 0 = 4 n b [ ( n b + 1 ) cos 2 π n f t λ - i ( n b n f + n f ) sin 2 π n f t λ ] 2 .
n f = [ n b ( 1 + R 0 1 2 ) / ( 1 - R 0 1 2 ) ] 1 2             for             n f 2 > n b
n f = [ n b ( 1 - R 0 1 2 ) / ( 1 + R 0 1 2 ) ] 1 2             for             n f 2 < n b .
t SiO 2 t SiO = M SiO 2 ρ SiO M SiO ρ SiO 2 = 1.35 ,
t SiO 2 / t SiO = 1.36 ± 0.03.