Abstract

A scotopic (b-wave) component of the human electroretinogram which results from small (1° to 12°) area stimulation has previously been shown, by the writer and others, to arise almost entirely from stray light in the eye which weakly illuminates large peripheral areas where the rods predominate. It is now indicated that for intermediate (45°) areas, a double-peaked b-wave is elicited which is believed to reflect activity aroused separately by image and stray light stimulus components. When extremely large (over 100°) stimulus areas are used, a unimodal response can be elicited using very weak luminances of stimulation. Since the large area response is mainly attributable to direct retinal stimulation, a basis is provided for comparing the effects of stray light (small area) and direct (very large area) stimulation. From such comparisons, it is concluded that (1) over four times as much luminous flux is required for a small stimulus to elicit a given b-wave as for a very large one to do so, (2) one of the stray light components is Rayleigh (small-particle) scatter, and (3) large-particle scatter and reflection from the fundus are also involved.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Fry and S. H. Bartley, Am. J. Physiol. 111, 335 (1935).
  2. S. H. Bartley, J. Comp. Psychol. 19, 149 (1935).
    [Crossref]
  3. Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).
  4. Ragnar Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947), pp. 173–174.
  5. H. Asher, J. Physiol. 112, 40P (1951).
  6. R. M. Boynton and L. A. Riggs, J. Exptl. Psychol. 42, 217 (1951).
    [Crossref]
  7. E. P. Johnson, J. Exptl. Psychol. 39, 597 (1949).
    [Crossref]
  8. Riggs, Berry, and Wayner, J. Opt. Soc. Am. 39, 427 (1949).
    [Crossref] [PubMed]
  9. F. Ridley and A. Sorsby, Modern Trends in Ophthalmology (Paul Hoeber, Inc., New York, 1940), see chapter by F. P. Fisher.
  10. E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
    [Crossref]
  11. I. Kugelberg and A. E. Sandström, v. Graefes Arch. Ophthalmol., p. 561 (1936).
    [Crossref]
  12. P. W. Cobb, Am. J. Physiol. 29, 76 (1911).
  13. S. H. Bartley and G. A. Fry, J. Opt. Soc. Am. 24, 342 (1934).
    [Crossref]
  14. Y. LeGrand, Rev. d’Optique 16, 201 (1937); Rev. d’Optique 16, 241 (1937).
  15. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B122, 255 (1937).
    [Crossref]
  16. J. F. Schouten and L. S. Ornstein, J. Opt. Soc. Am. 29, 168 (1939).
    [Crossref]
  17. L. A. Riggs, Proc. Soc. Exptl. Biol. Med. 48, 204 (1941).
    [Crossref]
  18. G. Smelser and V. Ozanics, Science 115, 140 (1952).
    [Crossref] [PubMed]
  19. Rayleigh, Phil Mag. (Fourth Series) 41, 107 (1871); Phil Mag. (Fourth Series)  41, 274 (1871). A good modern summary is given by E. J. Bowen in The Chemical Aspects of Light (Clarendon Press, Oxford, 1946).
  20. R. J. Beitel, J. Gen. Psychol. 10, 311 (1934); J. Gen Psychol. 14, 31 (1936).
    [Crossref]
  21. R. Granit, Am. J. Physiol. 94, 41 (1930).
  22. W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933); Proc. Roy. Soc. (London) B116, 55 (1934).
    [Crossref]

1952 (1)

G. Smelser and V. Ozanics, Science 115, 140 (1952).
[Crossref] [PubMed]

1951 (2)

H. Asher, J. Physiol. 112, 40P (1951).

R. M. Boynton and L. A. Riggs, J. Exptl. Psychol. 42, 217 (1951).
[Crossref]

1949 (2)

1941 (1)

L. A. Riggs, Proc. Soc. Exptl. Biol. Med. 48, 204 (1941).
[Crossref]

1939 (1)

1938 (1)

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

1937 (2)

Y. LeGrand, Rev. d’Optique 16, 201 (1937); Rev. d’Optique 16, 241 (1937).

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B122, 255 (1937).
[Crossref]

1936 (1)

I. Kugelberg and A. E. Sandström, v. Graefes Arch. Ophthalmol., p. 561 (1936).
[Crossref]

1935 (3)

G. A. Fry and S. H. Bartley, Am. J. Physiol. 111, 335 (1935).

S. H. Bartley, J. Comp. Psychol. 19, 149 (1935).
[Crossref]

Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).

1934 (2)

S. H. Bartley and G. A. Fry, J. Opt. Soc. Am. 24, 342 (1934).
[Crossref]

R. J. Beitel, J. Gen. Psychol. 10, 311 (1934); J. Gen Psychol. 14, 31 (1936).
[Crossref]

1933 (1)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933); Proc. Roy. Soc. (London) B116, 55 (1934).
[Crossref]

1930 (1)

R. Granit, Am. J. Physiol. 94, 41 (1930).

1911 (1)

P. W. Cobb, Am. J. Physiol. 29, 76 (1911).

1871 (1)

Rayleigh, Phil Mag. (Fourth Series) 41, 107 (1871); Phil Mag. (Fourth Series)  41, 274 (1871). A good modern summary is given by E. J. Bowen in The Chemical Aspects of Light (Clarendon Press, Oxford, 1946).

Asher, H.

H. Asher, J. Physiol. 112, 40P (1951).

Bartley, S. H.

G. A. Fry and S. H. Bartley, Am. J. Physiol. 111, 335 (1935).

S. H. Bartley, J. Comp. Psychol. 19, 149 (1935).
[Crossref]

S. H. Bartley and G. A. Fry, J. Opt. Soc. Am. 24, 342 (1934).
[Crossref]

Beitel, R. J.

R. J. Beitel, J. Gen. Psychol. 10, 311 (1934); J. Gen Psychol. 14, 31 (1936).
[Crossref]

Berry,

Boynton, R. M.

R. M. Boynton and L. A. Riggs, J. Exptl. Psychol. 42, 217 (1951).
[Crossref]

Cobb, P. W.

P. W. Cobb, Am. J. Physiol. 29, 76 (1911).

Crawford, B. H.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B122, 255 (1937).
[Crossref]

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933); Proc. Roy. Soc. (London) B116, 55 (1934).
[Crossref]

Fry, G. A.

G. A. Fry and S. H. Bartley, Am. J. Physiol. 111, 335 (1935).

S. H. Bartley and G. A. Fry, J. Opt. Soc. Am. 24, 342 (1934).
[Crossref]

Granit,

Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).

Granit, R.

R. Granit, Am. J. Physiol. 94, 41 (1930).

Granit, Ragnar

Ragnar Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947), pp. 173–174.

Johnson, E. P.

E. P. Johnson, J. Exptl. Psychol. 39, 597 (1949).
[Crossref]

Kugelberg, I.

I. Kugelberg and A. E. Sandström, v. Graefes Arch. Ophthalmol., p. 561 (1936).
[Crossref]

LeGrand, Y.

Y. LeGrand, Rev. d’Optique 16, 201 (1937); Rev. d’Optique 16, 241 (1937).

Ludvigh, E.

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

McCarthy, E. F.

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

Ornstein, L. S.

Ozanics, V.

G. Smelser and V. Ozanics, Science 115, 140 (1952).
[Crossref] [PubMed]

Rayleigh,

Rayleigh, Phil Mag. (Fourth Series) 41, 107 (1871); Phil Mag. (Fourth Series)  41, 274 (1871). A good modern summary is given by E. J. Bowen in The Chemical Aspects of Light (Clarendon Press, Oxford, 1946).

Ridley, F.

F. Ridley and A. Sorsby, Modern Trends in Ophthalmology (Paul Hoeber, Inc., New York, 1940), see chapter by F. P. Fisher.

Riggs,

Riggs, L. A.

R. M. Boynton and L. A. Riggs, J. Exptl. Psychol. 42, 217 (1951).
[Crossref]

L. A. Riggs, Proc. Soc. Exptl. Biol. Med. 48, 204 (1941).
[Crossref]

Rubenstein,

Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).

Sandström, A. E.

I. Kugelberg and A. E. Sandström, v. Graefes Arch. Ophthalmol., p. 561 (1936).
[Crossref]

Schouten, J. F.

Smelser, G.

G. Smelser and V. Ozanics, Science 115, 140 (1952).
[Crossref] [PubMed]

Sorsby, A.

F. Ridley and A. Sorsby, Modern Trends in Ophthalmology (Paul Hoeber, Inc., New York, 1940), see chapter by F. P. Fisher.

Stiles, W. S.

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B122, 255 (1937).
[Crossref]

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933); Proc. Roy. Soc. (London) B116, 55 (1934).
[Crossref]

Therman,

Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).

Wayner,

Am. J. Physiol. (3)

G. A. Fry and S. H. Bartley, Am. J. Physiol. 111, 335 (1935).

P. W. Cobb, Am. J. Physiol. 29, 76 (1911).

R. Granit, Am. J. Physiol. 94, 41 (1930).

Arch. Ophthalmol. (1)

E. Ludvigh and E. F. McCarthy, Arch. Ophthalmol. 20, 37 (1938).
[Crossref]

J. Comp. Psychol. (1)

S. H. Bartley, J. Comp. Psychol. 19, 149 (1935).
[Crossref]

J. Exptl. Psychol. (2)

R. M. Boynton and L. A. Riggs, J. Exptl. Psychol. 42, 217 (1951).
[Crossref]

E. P. Johnson, J. Exptl. Psychol. 39, 597 (1949).
[Crossref]

J. Gen. Psychol. (1)

R. J. Beitel, J. Gen. Psychol. 10, 311 (1934); J. Gen Psychol. 14, 31 (1936).
[Crossref]

J. Opt. Soc. Am. (3)

J. Physiol. (2)

H. Asher, J. Physiol. 112, 40P (1951).

Granit, Rubenstein, and Therman, J. Physiol. 85, 34P (1935).

Phil Mag. (Fourth Series) (1)

Rayleigh, Phil Mag. (Fourth Series) 41, 107 (1871); Phil Mag. (Fourth Series)  41, 274 (1871). A good modern summary is given by E. J. Bowen in The Chemical Aspects of Light (Clarendon Press, Oxford, 1946).

Proc. Roy. Soc. (London) (2)

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B112, 428 (1933); Proc. Roy. Soc. (London) B116, 55 (1934).
[Crossref]

W. S. Stiles and B. H. Crawford, Proc. Roy. Soc. (London) B122, 255 (1937).
[Crossref]

Proc. Soc. Exptl. Biol. Med. (1)

L. A. Riggs, Proc. Soc. Exptl. Biol. Med. 48, 204 (1941).
[Crossref]

Rev. d’Optique (1)

Y. LeGrand, Rev. d’Optique 16, 201 (1937); Rev. d’Optique 16, 241 (1937).

Science (1)

G. Smelser and V. Ozanics, Science 115, 140 (1952).
[Crossref] [PubMed]

v. Graefes Arch. Ophthalmol. (1)

I. Kugelberg and A. E. Sandström, v. Graefes Arch. Ophthalmol., p. 561 (1936).
[Crossref]

Other (2)

Ragnar Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947), pp. 173–174.

F. Ridley and A. Sorsby, Modern Trends in Ophthalmology (Paul Hoeber, Inc., New York, 1940), see chapter by F. P. Fisher.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Diagram of the stimulating system. The upper diagram (A) shows the optical system used to deliver small area stimuli; the lower diagram (B) shows the modifications in that system required to provide large area stimulation. SL—stimulus lamp (ribbon filament); Fltr—neutral density and color filters; St—stop; aperture 2.5 mm in diam; Sh—pendulum-type shutter; D, d—diaphragms; E—eye; MG—milk glass plate.

Fig. 2
Fig. 2

Specimen records showing the interaction between area and luminance of large area stimuli. The figures given below indicate stimulus area and the logarithmic amount of neutral filtering used for the analogous groups of records shown above. With no filters in the system, the luminance of the stimulus field was approximately 7 ft-L.

Fig. 3
Fig. 3

B-wave responses obtained under radically differing stimulus conditions (12° vs 105° circular areas). Responses to a range of luminances are shown for each condition. The vertical marks between the two sets of records are 0.1 sec apart and 100 μv in height.

Fig. 4
Fig. 4

Family of curves relating b-wave height to the corrected neutral density filtering used in conjunction with each of five color filters. The parameter is the median wavelength described in Table II. These data are from a single experimental session, using the small area condition.

Fig. 5
Fig. 5

Individual and average results showing spectral sensitivity, determined as described in the text, as a function of wavelength, for the two experimental conditions.

Fig. 6
Fig. 6

Apparatus used in glare experiment. Subject fixated F in mirror M. Fixation point bisected the angle between the axes of the two optical systems (30°), under which condition the glare stimulus was imaged on the optic disk. G—glare source; Fg, Ft—location of neutral and color filters in glare and test systems; D—diaphragms; W—wall; MgO—magnesium oxide plate; T—test source. T was moveable with respect to MgO by the subject, thus providing the variable luminance control of the test patch.

Fig. 7
Fig. 7

Plot showing: (a) the average spectral sensitivity curve obtained for three subjects under the large area condition; (b) the theoretical points which are predictions from the large area curve, based on the Rayleigh equation (these predictions are taken from Table III, and the points are connected in this figure by a dotted line); and (c) the empirical points obtained under the small area condition. The relation between the theoretical curve and the values obtained under the small area condition shows the extent to which the Rayleigh equation predicted the small area result.

Tables (3)

Tables Icon

Table I Calculations yielding values of luminous flux transmitted through the pupil of the eye required to elicit a criterion (50 μv in height) b-wave response for a small stimulus (12° diam) and a large stimulus (105° diam).

Tables Icon

Table II Transmission data for the Farrand interference color filters used.

Tables Icon

Table III Computations showing the predicted small area-large area differences. Based on formula (2) in text. λ2=509 mμ.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F 1 F 2 = sin 2 α 1 sin 2 α 2 ,
I 1 / I 2 = ( λ 2 / λ 1 ) 4
log ( I 1 / I 2 ) = 4 log ( λ 2 / λ 1 ) ,