Abstract

By combining Barrell and Sears’ measurements in the visible and Koch’s and Traub’s in the ultraviolet, a dispersion formula for standard air has been derived, viz.,

(n1)108=6432.8+2 949 810(146σ2)1+25 540(41σ2)1,
σ being vacuum wave number in μ−1, which should satisfy all needs of precision spectroscopy, in particular for converting wavelengths in air into vacuum values.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kayser, Tabelle der Schwingungszahlen etc. (B. G. Teubner, Leipzig, 1925).
  2. W. F. Meggers and C. G. Peters, Natl. Bur. Standards U. S. Sci. Papers 14, 724 (1918).
  3. W. Kösters and P. Lampe, Physik. Z. 35, 223 (1934).
  4. A. Pérard, Trav. Bur. int. Pds. Mes. 19, 78 (1934).
  5. H. Barrell and J. E. Sears, Trans. Roy. Soc. (London) A238, 1 (1939).
    [Crossref]
  6. See Trans. Intern. Astron. Union 6, 87 (1938).
  7. J. Koch, Arkiv Mat. Astron. Fysik 8, No. 20 (1912).
  8. W. Traub, Ann. Physik 61, 533 (1920).
    [Crossref]
  9. Burns, Adams, and Longwell, J. Opt. Soc. Am. 40, 339 (1950)
    [Crossref]
  10. M.I.T. Wavelength Tables (New York, 1939).
  11. J. Koch, Arkiv Mat. Astron. Fysik 10, No. 1 (1914).
  12. W. F. Meggers and K. G. Kessler, J. Opt. Soc. Am. 40, 737 (1950).
    [Crossref]
  13. K. Burns and K. B. Adams, J. Opt. Soc. Am. 42, 56 (1952).
    [Crossref]
  14. H. Barrell, J. Opt. Soc. Am. 41, 295 (1951).
    [Crossref]
  15. H. D. Babcock, Astrophys. J. 111, 60 (1950).
    [Crossref]
  16. K. B. Newbound, J. Opt. Soc. Am. 39, 835 (1949).
    [Crossref]
  17. Arkiv Fysik 5, 127 (1952).

1952 (2)

1951 (1)

1950 (3)

1949 (1)

1939 (1)

H. Barrell and J. E. Sears, Trans. Roy. Soc. (London) A238, 1 (1939).
[Crossref]

1938 (1)

See Trans. Intern. Astron. Union 6, 87 (1938).

1934 (2)

W. Kösters and P. Lampe, Physik. Z. 35, 223 (1934).

A. Pérard, Trav. Bur. int. Pds. Mes. 19, 78 (1934).

1920 (1)

W. Traub, Ann. Physik 61, 533 (1920).
[Crossref]

1918 (1)

W. F. Meggers and C. G. Peters, Natl. Bur. Standards U. S. Sci. Papers 14, 724 (1918).

1914 (1)

J. Koch, Arkiv Mat. Astron. Fysik 10, No. 1 (1914).

1912 (1)

J. Koch, Arkiv Mat. Astron. Fysik 8, No. 20 (1912).

Adams,

Adams, K. B.

Babcock, H. D.

H. D. Babcock, Astrophys. J. 111, 60 (1950).
[Crossref]

Barrell, H.

H. Barrell, J. Opt. Soc. Am. 41, 295 (1951).
[Crossref]

H. Barrell and J. E. Sears, Trans. Roy. Soc. (London) A238, 1 (1939).
[Crossref]

Burns,

Burns, K.

Kayser, H.

H. Kayser, Tabelle der Schwingungszahlen etc. (B. G. Teubner, Leipzig, 1925).

Kessler, K. G.

Koch, J.

J. Koch, Arkiv Mat. Astron. Fysik 10, No. 1 (1914).

J. Koch, Arkiv Mat. Astron. Fysik 8, No. 20 (1912).

Kösters, W.

W. Kösters and P. Lampe, Physik. Z. 35, 223 (1934).

Lampe, P.

W. Kösters and P. Lampe, Physik. Z. 35, 223 (1934).

Longwell,

Meggers, W. F.

W. F. Meggers and K. G. Kessler, J. Opt. Soc. Am. 40, 737 (1950).
[Crossref]

W. F. Meggers and C. G. Peters, Natl. Bur. Standards U. S. Sci. Papers 14, 724 (1918).

Newbound, K. B.

Pérard, A.

A. Pérard, Trav. Bur. int. Pds. Mes. 19, 78 (1934).

Peters, C. G.

W. F. Meggers and C. G. Peters, Natl. Bur. Standards U. S. Sci. Papers 14, 724 (1918).

Sears, J. E.

H. Barrell and J. E. Sears, Trans. Roy. Soc. (London) A238, 1 (1939).
[Crossref]

Traub, W.

W. Traub, Ann. Physik 61, 533 (1920).
[Crossref]

Ann. Physik (1)

W. Traub, Ann. Physik 61, 533 (1920).
[Crossref]

Arkiv Fysik (1)

Arkiv Fysik 5, 127 (1952).

Arkiv Mat. Astron. Fysik (2)

J. Koch, Arkiv Mat. Astron. Fysik 10, No. 1 (1914).

J. Koch, Arkiv Mat. Astron. Fysik 8, No. 20 (1912).

Astrophys. J. (1)

H. D. Babcock, Astrophys. J. 111, 60 (1950).
[Crossref]

J. Opt. Soc. Am. (5)

Natl. Bur. Standards U. S. Sci. Papers (1)

W. F. Meggers and C. G. Peters, Natl. Bur. Standards U. S. Sci. Papers 14, 724 (1918).

Physik. Z. (1)

W. Kösters and P. Lampe, Physik. Z. 35, 223 (1934).

Trans. Intern. Astron. Union (1)

See Trans. Intern. Astron. Union 6, 87 (1938).

Trans. Roy. Soc. (London) (1)

H. Barrell and J. E. Sears, Trans. Roy. Soc. (London) A238, 1 (1939).
[Crossref]

Trav. Bur. int. Pds. Mes. (1)

A. Pérard, Trav. Bur. int. Pds. Mes. 19, 78 (1934).

Other (2)

H. Kayser, Tabelle der Schwingungszahlen etc. (B. G. Teubner, Leipzig, 1925).

M.I.T. Wavelength Tables (New York, 1939).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

Observed refractivity minus formula (1) versus wave number. Observations: Barrell and Sears □, Koch ×, Traub ○.

F. 2
F. 2

Various dispersion formulas minus formula (2) versus σ2. Note that vertical scale is 10 times smaller than in Fig. 1.

Tables (3)

Tables Icon

Table II Recurring intervals in the spectrum of Hg 198 calculated by means of dispersion formula (2) from wavelength measurements by Meggers and Kessler and by Burns and Adams.

Tables Icon

Table III Systematic corrections to be applied to the wave numbers given in Kayser’s Tabelle der Schwingungszahlen for different wavelength regions. The wavelength λ is expressed in A and Δσ in m−1 as in Kayser’s table.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

( n 1 ) 10 8 = 6432.8 + 2 949 810 ( 146 σ 2 ) 1 + 25 540 ( 41 σ 2 ) 1 ,
σ vac = 1 / λ vac = 1 / n λ air ,
( n 1 ) 10 8 = 5.08665 λ s ,
( n 1 ) 10 8 = 6431.8 + 2 949 330 146 σ 2 + 25 536 41 σ 2 ,
( n 1 ) standard air = ( 1 + 0.0003 n CO 2 n air ( n 1 ) air ) × ( n 1 ) CO 2 free air .
( n 1 ) 10 8 = 6432.8 + 2 949 810 146 σ 2 + 25 540 41 σ 2 .
( n 1 ) 10 8 = 27 264.3 + 122.92 σ 2 + 3.560 σ 4 ,
( n 1 ) 10 8 = 27 274.7 + 150.19 σ 2 + 1.835 σ 4 ,
( n 1 ) 10 8 = 27 286.0 + 140.14 σ 2 + 2.998 σ 4 ,
( n 1 ) 10 8 = 27 258.5 + 154.37 σ 2 + 1.293 σ 4 ,
( n 1 ) 10 8 = 27 272.9 + 148.23 σ 2 + 2.041 σ 4 ( σ = vacuum wave number in μ 1 ) .
λ 2 0 λ 2 = λ 2 ( n 2 0 n 1 0 ) ( p 760 1 + 0.00367 × 15 1 + 0.00367 × t 1 ) ,
λ 2 0 λ 2 = ( Δ λ 2 Δ λ 1 λ 2 / λ 1 ) ( 0.0013882 p 1 + 0.00367 t 1 ) ,
( n ) moist air ( n ) dry air = Δ n = ( a b σ 2 ) f / ( 1 + α t ) .
Δ λ = λ 2 b ( σ 2 2 σ 1 2 ) f / ( 1 + α t ) ,
Δ λ × 10 5 = + 0.63 ( 1 + λ 2 / λ 1 ) ( σ 2 σ 1 ) f ,