Abstract

This paper describes, summarizes, and compares the properties of three photoelectric devices, namely: point contact phototransistors, p-n junction phototransistors, and n-p-n junction multiplier phototransistors, which have resulted from the prosecution of the transistor program at the Bell Telephone Laboratories. The first of these devices is characterized by a comparatively high dark current and a quantum yield of 3 or 4 electrons per quantum. The second has a dark current in the microampere range and a quantum yield of approximately unity. The n-p-n device has a sensitivity corresponding at best to a quantum yield of several hundred electrons per quantum. All these devices have long-wave thresholds around 1.8 microns. The structures lend themselves readily to miniature encapsulation.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Shive, Bell Labs. Record 25, 6, p. 289 (1950).
  2. F. S. Goucher, Phys. Rev. 81, 475 (1951).
    [CrossRef]
  3. Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
    [CrossRef]
  4. W. Shockley, Bell System Tech. J. 28, 435 (1949).
    [CrossRef]
  5. W. Shockley, Electrons and Holes in Semiconductors (D. Van Nostrand Company, Inc., New York, 1950), Chap. 12.
  6. F. S. Goucher, Phys. Rev. 78, 816 (1950).
    [CrossRef]
  7. W. Shockley, see reference 5, Ch. 4.
  8. L. B. Valdes, Proc. Inst. Radio Engrs. 40, 445 (1952).
  9. W. A. Sittner, Proc. Inst. Radio Engrs. 40, 448 (1952).
  10. Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
    [CrossRef]

1952 (2)

L. B. Valdes, Proc. Inst. Radio Engrs. 40, 445 (1952).

W. A. Sittner, Proc. Inst. Radio Engrs. 40, 448 (1952).

1951 (3)

Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
[CrossRef]

F. S. Goucher, Phys. Rev. 81, 475 (1951).
[CrossRef]

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

1950 (2)

J. N. Shive, Bell Labs. Record 25, 6, p. 289 (1950).

F. S. Goucher, Phys. Rev. 78, 816 (1950).
[CrossRef]

1949 (1)

W. Shockley, Bell System Tech. J. 28, 435 (1949).
[CrossRef]

Goucher,

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

Goucher, F. S.

F. S. Goucher, Phys. Rev. 81, 475 (1951).
[CrossRef]

F. S. Goucher, Phys. Rev. 78, 816 (1950).
[CrossRef]

Pearson,

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

Shive, J. N.

J. N. Shive, Bell Labs. Record 25, 6, p. 289 (1950).

Shockley,

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
[CrossRef]

Shockley, W.

W. Shockley, Bell System Tech. J. 28, 435 (1949).
[CrossRef]

W. Shockley, Electrons and Holes in Semiconductors (D. Van Nostrand Company, Inc., New York, 1950), Chap. 12.

W. Shockley, see reference 5, Ch. 4.

Sittner, W. A.

W. A. Sittner, Proc. Inst. Radio Engrs. 40, 448 (1952).

Sparks,

Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
[CrossRef]

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

Teal,

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
[CrossRef]

Valdes, L. B.

L. B. Valdes, Proc. Inst. Radio Engrs. 40, 445 (1952).

Bell Labs. Record (1)

J. N. Shive, Bell Labs. Record 25, 6, p. 289 (1950).

Bell System Tech. J. (1)

W. Shockley, Bell System Tech. J. 28, 435 (1949).
[CrossRef]

Phys. Rev. (4)

F. S. Goucher, Phys. Rev. 81, 475 (1951).
[CrossRef]

Goucher, Pearson, Sparks, Teal, and Shockley, Phys. Rev. 81, 637 (1951).
[CrossRef]

F. S. Goucher, Phys. Rev. 78, 816 (1950).
[CrossRef]

Shockley, Sparks, and Teal, Phys. Rev. 83, 151 (1951).
[CrossRef]

Proc. Inst. Radio Engrs. (2)

L. B. Valdes, Proc. Inst. Radio Engrs. 40, 445 (1952).

W. A. Sittner, Proc. Inst. Radio Engrs. 40, 448 (1952).

Other (2)

W. Shockley, see reference 5, Ch. 4.

W. Shockley, Electrons and Holes in Semiconductors (D. Van Nostrand Company, Inc., New York, 1950), Chap. 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

F. 1
F. 1

Diagrams of three phototransistor types. Top: point contact phototransistor (section). Middle: p-n junction phototransistor (perspective). Bottom: n-p-n junction phototransistor (perspective).

F. 2
F. 2

Left to right: point contact phototransistors, p-n junction phototransistors, n-p-n junction phototransistors.

F. 3
F. 3

Comparisons of phototransistor structures (right) with related transistor structures (left).

F. 4
F. 4

Sensitivity profile across the junction of a p-n junction phototransistor.

F. 5
F. 5

Current-voltage characteristics of a point contact phototransistor.

F. 6
F. 6

Current-voltage characteristics of a p-n junction phototransistor.

F. 7
F. 7

Current-voltage characteristics of an n-p-n junction phototransistor.

F. 8
F. 8

Energy level diagram showing mechanism of multiplication in an n-p-n phototransistor.

F. 9
F. 9

Transit time lags in a p-n junction phototransistor.

F. 10
F. 10

Temperature dependence of dark current for three phototransistor types.

F. 11
F. 11

Spectral response of a germanium photocell.

Tables (1)

Tables Icon

Table I

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y = 1 + ( σ e L p e / σ p w ) ,