Abstract

The dark current and signal/noise characteristics of an RCA 1P21 and an E.M.I. VX5031 photomultiplier have been compared from the point of view of their suitability for photoelectric Raman spectroscopy. The construction of a simple apparatus for the refrigeration of the RCA tube to liquid oxygen temperature is described. It is found that at low temperatures the noise associated with the dark current of the photomultiplier is negligible compared with the fluctuations (shot effect) in the photocurrent obtained when recording Raman spectra. Under these conditions the signal-to-noise ratio obtainable for a given rate of scanning of the spectrum depends solely on the square root of the light flux incident upon the photomultiplier, and cannot be improved by further refrigeration of the detector.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
    [Crossref]
  2. Rank, Pfister, and Coleman, J. Opt. Soc. Am. 32, 390 (1942).
    [Crossref]
  3. Rank, Pfister, and Grimm, J. Opt. Soc. Am. 33, 31 (1943).
    [Crossref]
  4. D. H. Rank and R. V. Wiegand, J. Opt. Soc. Am. 36, 325 (1946).
    [Crossref] [PubMed]
  5. J. Y. Chien and P. Bender, J. Chem. Phys. 15, 376 (1947).
    [Crossref]
  6. P. O. Kinell and P. Traynard, Acta Chem. Scand. 2, 193 (1948).
    [Crossref]
  7. Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
    [Crossref]
  8. M. M. Suschinskii, Doklady Akad. Nauk S.S.S.R. 70, 221 (1950).
  9. Stamm, Salzman, and Mariner, J. Opt. Soc. Am. 43, 119 (1953).
    [Crossref]
  10. R. F. Stamm and C. F. Salzman, J. Opt. Soc. Am. 43, 127 (1953).
  11. M. Dupeyrat, J. phys. radium 14, 131 (1953).
    [Crossref]
  12. A. Sommer and W. E. Turk, J. Sci. Instr. 27, 113 (1950).
    [Crossref]
  13. C. Taylor, J. phys. radium 10, 255 (1949).
    [Crossref]
  14. R. W. Engstrom (private communication).
  15. R. W. Engstrom, Rev. Sci. Instr. 18, 587 (1947).
    [Crossref]
  16. Kemp, Jones, and Durkee, J. Opt. Soc. Am. 42, 811 (1952).
    [Crossref]

1953 (3)

Stamm, Salzman, and Mariner, J. Opt. Soc. Am. 43, 119 (1953).
[Crossref]

R. F. Stamm and C. F. Salzman, J. Opt. Soc. Am. 43, 127 (1953).

M. Dupeyrat, J. phys. radium 14, 131 (1953).
[Crossref]

1952 (1)

1950 (3)

A. Sommer and W. E. Turk, J. Sci. Instr. 27, 113 (1950).
[Crossref]

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

M. M. Suschinskii, Doklady Akad. Nauk S.S.S.R. 70, 221 (1950).

1949 (1)

C. Taylor, J. phys. radium 10, 255 (1949).
[Crossref]

1948 (1)

P. O. Kinell and P. Traynard, Acta Chem. Scand. 2, 193 (1948).
[Crossref]

1947 (3)

J. Y. Chien and P. Bender, J. Chem. Phys. 15, 376 (1947).
[Crossref]

R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
[Crossref]

R. W. Engstrom, Rev. Sci. Instr. 18, 587 (1947).
[Crossref]

1946 (1)

1943 (1)

1942 (1)

Bender, P.

J. Y. Chien and P. Bender, J. Chem. Phys. 15, 376 (1947).
[Crossref]

Black,

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

Chien, J. Y.

J. Y. Chien and P. Bender, J. Chem. Phys. 15, 376 (1947).
[Crossref]

Coleman,

Dudenbostel,

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

Dupeyrat, M.

M. Dupeyrat, J. phys. radium 14, 131 (1953).
[Crossref]

Durkee,

Engstrom, R. W.

R. W. Engstrom, J. Opt. Soc. Am. 37, 420 (1947).
[Crossref]

R. W. Engstrom, Rev. Sci. Instr. 18, 587 (1947).
[Crossref]

R. W. Engstrom (private communication).

Grimm,

Heigl,

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

Jones,

Kemp,

Kinell, P. O.

P. O. Kinell and P. Traynard, Acta Chem. Scand. 2, 193 (1948).
[Crossref]

Mariner,

Pfister,

Rank,

Rank, D. H.

Salzman,

Salzman, C. F.

R. F. Stamm and C. F. Salzman, J. Opt. Soc. Am. 43, 127 (1953).

Sommer, A.

A. Sommer and W. E. Turk, J. Sci. Instr. 27, 113 (1950).
[Crossref]

Stamm,

Stamm, R. F.

R. F. Stamm and C. F. Salzman, J. Opt. Soc. Am. 43, 127 (1953).

Suschinskii, M. M.

M. M. Suschinskii, Doklady Akad. Nauk S.S.S.R. 70, 221 (1950).

Taylor, C.

C. Taylor, J. phys. radium 10, 255 (1949).
[Crossref]

Traynard, P.

P. O. Kinell and P. Traynard, Acta Chem. Scand. 2, 193 (1948).
[Crossref]

Turk, W. E.

A. Sommer and W. E. Turk, J. Sci. Instr. 27, 113 (1950).
[Crossref]

Wiegand, R. V.

Wilson,

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

Acta Chem. Scand. (1)

P. O. Kinell and P. Traynard, Acta Chem. Scand. 2, 193 (1948).
[Crossref]

Anal. Chem. (1)

Heigl, Dudenbostel, Black, and Wilson, Anal. Chem. 22, 154 (1950).
[Crossref]

Doklady Akad. Nauk S.S.S.R. (1)

M. M. Suschinskii, Doklady Akad. Nauk S.S.S.R. 70, 221 (1950).

J. Chem. Phys. (1)

J. Y. Chien and P. Bender, J. Chem. Phys. 15, 376 (1947).
[Crossref]

J. Opt. Soc. Am. (7)

J. phys. radium (2)

M. Dupeyrat, J. phys. radium 14, 131 (1953).
[Crossref]

C. Taylor, J. phys. radium 10, 255 (1949).
[Crossref]

J. Sci. Instr. (1)

A. Sommer and W. E. Turk, J. Sci. Instr. 27, 113 (1950).
[Crossref]

Rev. Sci. Instr. (1)

R. W. Engstrom, Rev. Sci. Instr. 18, 587 (1947).
[Crossref]

Other (1)

R. W. Engstrom (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagrammatic representations of the arrangement of dynodes in (a) the RCA 1P21 photomultiplier (twice scale), and (b) the E.M.I. VX5031 photomultiplier (half scale): P-photocathode; 1 to 11—dynodes; A—anode; M—mica shield; F—focusing grille.

Fig. 2(A)
Fig. 2(A)

Variation of the dark current of the RCA photomultiplier as a function of volts/stage (a) with the glass envelope uncoated, and (b) with the glass envelope coated and kept at cathode potential, (c) ohmic leakage.

Fig. 2(B)
Fig. 2(B)

Variation of the dark current of the RCA and E.M.I. photomultipliers as a function of volts/stage.

Fig. 3
Fig. 3

Variation of the dark current of the RCA photomultiplier as a function of the potential of the glass envelope.

Fig. 4
Fig. 4

Diagrammatic representation of a refrigerator for use with an RCA photomultiplier: P—photomultiplier; R—dynode resistances; A—brass sleeve; B—laminated plastic disk; C—brass cylindrical box; D—partly silvered Dewar flask; W—window; E—liquid oxygen or nitrogen.

Fig. 5
Fig. 5

Records of the output noise of the RCA photomultiplier at liquid oxygen temperatures: (1)—no light incident on the cathode; (2) signal incident on the cathode; (3) doubled (2×) signal; (4), as (3), but amplification halved; (5) redoubled (4×) signal; (6), as (5), but amplification halved.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S n 2 = i p 2 2 e Δ f ( i t + i p ) ,
( S n ) 2 ( S n ) 1 = ( ( i t ) 1 + i p ( i t ) 2 + i p ) 1 2 ,
( S n ) 2 ( S n ) 1 = [ ( i t ) 1 i p ] 1 2 ,
( S n ) 1 2 = i p 2 2 e Δ f ( i t ) 1 ,
( S n ) 2 ( S n ) 1 = [ ( i t ) 1 2 e Δ f ] 1 4 · 1 [ ( S n ) 1 ] 1 2 .