Abstract

Additional light scattering functions for spherical particles of refractive index 2 have been computed in order to permit better interpolation of published functions.

PDF Article

References

  • View by:
  • |
  • |

  1. G. Mie, Ann. Physik 25, 377 (1908).
  2. M. Kerker and M. L. Hampton (to be published).
  3. A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.
  4. Gumprecht, Sung, Chin, and Sliepcevich, J. Opt. Soc. Am. 42, 226 (1952).
  5. R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Gumprecht, R. O.

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Hampton, M. L.

M. Kerker and M. L. Hampton (to be published).

Kerker, M.

M. Kerker and M. L. Hampton (to be published).

Lowan, A. N.

A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).

Sliepcevich, C. M.

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Other (5)

G. Mie, Ann. Physik 25, 377 (1908).

M. Kerker and M. L. Hampton (to be published).

A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.

Gumprecht, Sung, Chin, and Sliepcevich, J. Opt. Soc. Am. 42, 226 (1952).

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.