Abstract

Additional light scattering functions for spherical particles of refractive index 2 have been computed in order to permit better interpolation of published functions.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, Ann. Physik 25, 377 (1908).
    [Crossref]
  2. M. Kerker and M. L. Hampton (to be published).
  3. A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.
  4. Gumprecht, Sung, Chin, and Sliepcevich, J. Opt. Soc. Am. 42, 226 (1952).
    [Crossref]
  5. R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

1952 (1)

1908 (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Chin,

Gumprecht,

Gumprecht, R. O.

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Hampton, M. L.

M. Kerker and M. L. Hampton (to be published).

Kerker, M.

M. Kerker and M. L. Hampton (to be published).

Lowan, A. N.

A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Sliepcevich,

Sliepcevich, C. M.

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

Sung,

Ann. Physik (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

J. Opt. Soc. Am. (1)

Other (3)

R. O. Gumprecht and C. M. Sliepcevich, Tables of Functions of First and Second Partial Derivatives of Legendre Polynomiasl (University of Michigan, Engineering Research Institute, Ann Arbor, Michigan, 1951), Special Publication: Tables.

M. Kerker and M. L. Hampton (to be published).

A. N. Lowan, Tables of Scattering Functions for Spherical Particles (Department of Commerce, National Bureau of Standards), Applied Mathematics Series 4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

F. 1
F. 1

i1 versus α = 2πr/λ. r is particle radius and λ is wavelength. Lowan’s points θ. Our points 0.

F. 2
F. 2

i2 versus α = 2πr/λ. r is particle radius and λ is wavelength. Lowan’s points θ. Our points 0.

Tables (1)

Tables Icon

Table I Scattering functions for m = 2.