Abstract

Problems relating to the design of a far infrared spectrograph are discussed. The design of a spectrograph which was constructed is described. A platinum strip coated with thorium-oxide is used as a source. Discrimination against short-wave radiation is provided by quartz, paraffin, turpentine soot, a compensated potassium bromide chopper, reststrahlen plates, and a grating (used as a reflection filter) with groove separation somewhat less than the wavelength being investigated. As a dispersing device, an echelette grating ruled with 180 lines per inch is used. The detector is a Golay pneumatic cell. A low noise vacuum-tube amplifier renders the signal from the detector suitable for operation of a strip-chart recorder. The spectrograph is evacuable.

Spectral operating characteristics of the instrument are shown in ammonia and atmospheric water vapor spectra in the region between 45 and 150 microns. Absorption lines separated by less than 1 cm−1 are well resolved throughout this spectral region.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Randall, Revs. Modern Phys. 10, 72 (1938).
    [Crossref]
  2. H. M. Randall, Rev. Sci. Instr. 3, 196 (1932).
    [Crossref]
  3. H. M. Randall and F. A. Firestone, Rev. Sci. Instr. 9, 404 (1938).
    [Crossref]
  4. Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
    [Crossref]
  5. N. Wright and H. M. Randall, Phys. Rev. 44, 391 (1933).
    [Crossref]
  6. Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
    [Crossref]
  7. D. G. Burkhard, “Molecular structure and far infrared spectrum of methyl alcohol,” dissertation (University of Michigan, Ann Arbor, Michigan, 1950).
  8. T. King McCubbin and Wm. M. Sinton, J. Opt. Soc. Am. 40, 537 (1950).
    [Crossref]
  9. J. Strong, Phys. Today 4, No. 4, 14 (April, 1951).
    [Crossref]
  10. T. King McCubbin, “Far infrared spectroscopy from 100 to 700 microns,” dissertation (The Johns Hopkins University, Baltimore, Maryland, July, 1951).
  11. R. B. Barnes, Rev. Sci. Instr. 5, 237 (1934).
    [Crossref]
  12. Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
    [Crossref]
  13. R. B. Barnes, Phys. Rev. 47, 658 (1935).
    [Crossref]
  14. Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
    [Crossref]
  15. R. M. Badger and C. H. Cartwright, Phys. Rev. 33, 692 (1929).
    [Crossref]
  16. R. B. Barnes, Phys. Rev. 39, 562 (1932).
    [Crossref]
  17. M. Czerny, Z. Physik 44, 235 (1927).
    [Crossref]
  18. M. Czerny, Z. Physik 34, 227 (1925).
    [Crossref]
  19. R. B. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
    [Crossref]
  20. C. H. Cartwright and M. Czerny, Z. Physik 90, 457 (1934).
    [Crossref]
  21. C. H. Cartwright, Z. Physik 90, 480 (1934).
    [Crossref]
  22. C. H. Cartwright, Nature 135, 872 (1935).
    [Crossref]
  23. C. H. Cartwright, Nature 136, 181 (1935).
    [Crossref]
  24. B. Koch, Ann. Physik 33, 335 (1938).
    [Crossref]
  25. W. Dahlke, Z. Physik 114, 205 (1939).
    [Crossref]
  26. W. Dahlke, Z. Physik 114, 672 (1939).
    [Crossref]
  27. W. Dahlke, Z. Physik 115, 1 (1940).
    [Crossref]
  28. O. Maar, Z. Physik 113, 415 (1939).
    [Crossref]
  29. H. Hopf, Z. Physik 116, 310 (1940).
    [Crossref]
  30. J. Strong, Procedures in Experimental Physics (Prentice-Hall, Inc., New York, 1938), p. 368.
  31. J. U. White, J. Opt. Soc. Am. 37, 713 (1947).
    [Crossref] [PubMed]
  32. M. J. E. Golay, Rev. Sci. Instr. 18, 357 (1947).
    [Crossref]
  33. M. J. E. Golay, Rev. Sci. Instr. 18, 347 (1947).
    [Crossref]
  34. M. J. E Golay, Rev. Sci. Instr. 20, 816 (1949).
    [Crossref]
  35. L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
    [Crossref]

1951 (1)

J. Strong, Phys. Today 4, No. 4, 14 (April, 1951).
[Crossref]

1950 (1)

1949 (1)

M. J. E Golay, Rev. Sci. Instr. 20, 816 (1949).
[Crossref]

1947 (3)

J. U. White, J. Opt. Soc. Am. 37, 713 (1947).
[Crossref] [PubMed]

M. J. E. Golay, Rev. Sci. Instr. 18, 357 (1947).
[Crossref]

M. J. E. Golay, Rev. Sci. Instr. 18, 347 (1947).
[Crossref]

1945 (1)

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

1940 (2)

H. Hopf, Z. Physik 116, 310 (1940).
[Crossref]

W. Dahlke, Z. Physik 115, 1 (1940).
[Crossref]

1939 (4)

O. Maar, Z. Physik 113, 415 (1939).
[Crossref]

W. Dahlke, Z. Physik 114, 205 (1939).
[Crossref]

W. Dahlke, Z. Physik 114, 672 (1939).
[Crossref]

Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
[Crossref]

1938 (3)

H. M. Randall, Revs. Modern Phys. 10, 72 (1938).
[Crossref]

H. M. Randall and F. A. Firestone, Rev. Sci. Instr. 9, 404 (1938).
[Crossref]

B. Koch, Ann. Physik 33, 335 (1938).
[Crossref]

1937 (1)

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

1935 (5)

Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
[Crossref]

R. B. Barnes, Phys. Rev. 47, 658 (1935).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
[Crossref]

C. H. Cartwright, Nature 135, 872 (1935).
[Crossref]

C. H. Cartwright, Nature 136, 181 (1935).
[Crossref]

1934 (3)

C. H. Cartwright and M. Czerny, Z. Physik 90, 457 (1934).
[Crossref]

C. H. Cartwright, Z. Physik 90, 480 (1934).
[Crossref]

R. B. Barnes, Rev. Sci. Instr. 5, 237 (1934).
[Crossref]

1933 (1)

N. Wright and H. M. Randall, Phys. Rev. 44, 391 (1933).
[Crossref]

1932 (2)

H. M. Randall, Rev. Sci. Instr. 3, 196 (1932).
[Crossref]

R. B. Barnes, Phys. Rev. 39, 562 (1932).
[Crossref]

1931 (1)

R. B. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
[Crossref]

1929 (1)

R. M. Badger and C. H. Cartwright, Phys. Rev. 33, 692 (1929).
[Crossref]

1927 (1)

M. Czerny, Z. Physik 44, 235 (1927).
[Crossref]

1925 (1)

M. Czerny, Z. Physik 34, 227 (1925).
[Crossref]

Badger, R. M.

R. M. Badger and C. H. Cartwright, Phys. Rev. 33, 692 (1929).
[Crossref]

Barnes,

Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
[Crossref]

Barnes, R. B.

R. B. Barnes, Phys. Rev. 47, 658 (1935).
[Crossref]

R. B. Barnes, Rev. Sci. Instr. 5, 237 (1934).
[Crossref]

R. B. Barnes, Phys. Rev. 39, 562 (1932).
[Crossref]

R. B. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
[Crossref]

Benedict,

Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
[Crossref]

Burkhard, D. G.

D. G. Burkhard, “Molecular structure and far infrared spectrum of methyl alcohol,” dissertation (University of Michigan, Ann Arbor, Michigan, 1950).

Cartwright, C. H.

C. H. Cartwright, Nature 135, 872 (1935).
[Crossref]

C. H. Cartwright, Nature 136, 181 (1935).
[Crossref]

C. H. Cartwright and M. Czerny, Z. Physik 90, 457 (1934).
[Crossref]

C. H. Cartwright, Z. Physik 90, 480 (1934).
[Crossref]

R. M. Badger and C. H. Cartwright, Phys. Rev. 33, 692 (1929).
[Crossref]

Czerny, M.

C. H. Cartwright and M. Czerny, Z. Physik 90, 457 (1934).
[Crossref]

R. B. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
[Crossref]

M. Czerny, Z. Physik 44, 235 (1927).
[Crossref]

M. Czerny, Z. Physik 34, 227 (1925).
[Crossref]

Dahlke, W.

W. Dahlke, Z. Physik 115, 1 (1940).
[Crossref]

W. Dahlke, Z. Physik 114, 205 (1939).
[Crossref]

W. Dahlke, Z. Physik 114, 672 (1939).
[Crossref]

Dennison,

Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
[Crossref]

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

E Golay, M. J.

M. J. E Golay, Rev. Sci. Instr. 20, 816 (1949).
[Crossref]

Firestone, F. A.

H. M. Randall and F. A. Firestone, Rev. Sci. Instr. 9, 404 (1938).
[Crossref]

Fuson,

Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
[Crossref]

Ginsburg,

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Golay, M. J. E.

M. J. E. Golay, Rev. Sci. Instr. 18, 357 (1947).
[Crossref]

M. J. E. Golay, Rev. Sci. Instr. 18, 347 (1947).
[Crossref]

Hopf, H.

H. Hopf, Z. Physik 116, 310 (1940).
[Crossref]

King McCubbin, T.

T. King McCubbin and Wm. M. Sinton, J. Opt. Soc. Am. 40, 537 (1950).
[Crossref]

T. King McCubbin, “Far infrared spectroscopy from 100 to 700 microns,” dissertation (The Johns Hopkins University, Baltimore, Maryland, July, 1951).

Koch, B.

B. Koch, Ann. Physik 33, 335 (1938).
[Crossref]

Lewis,

Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
[Crossref]

Maar, O.

O. Maar, Z. Physik 113, 415 (1939).
[Crossref]

Randall,

Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
[Crossref]

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

Randall, H. M.

H. M. Randall, Revs. Modern Phys. 10, 72 (1938).
[Crossref]

H. M. Randall and F. A. Firestone, Rev. Sci. Instr. 9, 404 (1938).
[Crossref]

N. Wright and H. M. Randall, Phys. Rev. 44, 391 (1933).
[Crossref]

H. M. Randall, Rev. Sci. Instr. 3, 196 (1932).
[Crossref]

Roess, L. C.

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

Sinton, Wm. M.

Strong, J.

J. Strong, Phys. Today 4, No. 4, 14 (April, 1951).
[Crossref]

J. Strong, Procedures in Experimental Physics (Prentice-Hall, Inc., New York, 1938), p. 368.

Weber,

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

White, J. U.

Wright, N.

N. Wright and H. M. Randall, Phys. Rev. 44, 391 (1933).
[Crossref]

Ann. Physik (1)

B. Koch, Ann. Physik 33, 335 (1938).
[Crossref]

J. Opt. Soc. Am. (2)

Nature (2)

C. H. Cartwright, Nature 135, 872 (1935).
[Crossref]

C. H. Cartwright, Nature 136, 181 (1935).
[Crossref]

Phys. Rev. (8)

Randall, Dennison, Ginsburg, and Weber, Phys. Rev. 52, 160 (1937).
[Crossref]

N. Wright and H. M. Randall, Phys. Rev. 44, 391 (1933).
[Crossref]

Fuson, Randall, and Dennison, Phys. Rev. 56, 982 (1939).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 918 (1935).
[Crossref]

R. B. Barnes, Phys. Rev. 47, 658 (1935).
[Crossref]

Barnes, Benedict, and Lewis, Phys. Rev. 47, 129 (1935).
[Crossref]

R. M. Badger and C. H. Cartwright, Phys. Rev. 33, 692 (1929).
[Crossref]

R. B. Barnes, Phys. Rev. 39, 562 (1932).
[Crossref]

Phys. Today (1)

J. Strong, Phys. Today 4, No. 4, 14 (April, 1951).
[Crossref]

Rev. Sci. Instr. (7)

H. M. Randall, Rev. Sci. Instr. 3, 196 (1932).
[Crossref]

H. M. Randall and F. A. Firestone, Rev. Sci. Instr. 9, 404 (1938).
[Crossref]

R. B. Barnes, Rev. Sci. Instr. 5, 237 (1934).
[Crossref]

M. J. E. Golay, Rev. Sci. Instr. 18, 357 (1947).
[Crossref]

M. J. E. Golay, Rev. Sci. Instr. 18, 347 (1947).
[Crossref]

M. J. E Golay, Rev. Sci. Instr. 20, 816 (1949).
[Crossref]

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

Revs. Modern Phys. (1)

H. M. Randall, Revs. Modern Phys. 10, 72 (1938).
[Crossref]

Z. Physik (10)

W. Dahlke, Z. Physik 114, 205 (1939).
[Crossref]

W. Dahlke, Z. Physik 114, 672 (1939).
[Crossref]

W. Dahlke, Z. Physik 115, 1 (1940).
[Crossref]

O. Maar, Z. Physik 113, 415 (1939).
[Crossref]

H. Hopf, Z. Physik 116, 310 (1940).
[Crossref]

M. Czerny, Z. Physik 44, 235 (1927).
[Crossref]

M. Czerny, Z. Physik 34, 227 (1925).
[Crossref]

R. B. Barnes and M. Czerny, Z. Physik 72, 447 (1931).
[Crossref]

C. H. Cartwright and M. Czerny, Z. Physik 90, 457 (1934).
[Crossref]

C. H. Cartwright, Z. Physik 90, 480 (1934).
[Crossref]

Other (3)

T. King McCubbin, “Far infrared spectroscopy from 100 to 700 microns,” dissertation (The Johns Hopkins University, Baltimore, Maryland, July, 1951).

D. G. Burkhard, “Molecular structure and far infrared spectrum of methyl alcohol,” dissertation (University of Michigan, Ann Arbor, Michigan, 1950).

J. Strong, Procedures in Experimental Physics (Prentice-Hall, Inc., New York, 1938), p. 368.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Block diagram of the detector-amplifier-recorder system.

Fig. 2
Fig. 2

Wiring schematic of the preamplifier.

Fig. 3
Fig. 3

Diagram showing relative locations of optical components and optical paths in source and filter unit and spectrograph. Identification of components: A, Source; B, Spherical mirror; C, Plane mirror; D, Compensated KBr chopper; E, Table providing for four reststrahlen plates; F, Grating filter (or plane mirror); G, Spherical mirror; H, Entrance slit of spectrograph; J, Off axis paraboloidal mirror; K, Echelette grating; L, Plane mirror; M, Exit slit; N, Plane mirror; P Ellipsoidal mirror; Q, Detector.

Fig. 4
Fig. 4

Photograph of spectrograph and source and filter unit. The optical components associated with the detector are in the foreground.

Fig. 5
Fig. 5

Water vapor spectrum recorded with grating ruled with 180 lines per inch. The filtering consisted of the compensated KBr chopper, one KRS-5 reststrahlen plate, one grating ruled with 360 lines per inch, sooted paraffin, and the crystalline quartz detector window. Slit widths: 10.5, 8, and 6 mm. Spectral slit widths: from 0.4 cm−1 to 0.6 cm−1.

Fig. 6
Fig. 6

Water vapor spectrum recorded with grating ruled with 180 lines per inch. The filtering consisted of the compensated KBr chopper, one grating ruled with 360 lines per inch, sooted paraffin, and the crystalline quartz detector window. Slit width: 1.8 mm. Spectral slit widths: 0.25 cm−1 at 100 cm−1 and 0.5 cm−1 at 150 cm−1.

Fig. 7
Fig. 7

Water vapor spectrum recorded with grating ruled with 180 lines per inch. The filtering consisted of the compensated KBr chopper, one NaCl reststrahlen plate, sooted paraffin, and the crystalline quartz detector window. Slit width: 2 mm. Spectral slit Width: 0.8 cm−1 at 175 cm−1.

Fig. 8
Fig. 8

Water vapor spectrum recorded in second order with grating ruled with 180 lines per inch. The filtering consisted of the compensated KBr chopper, one NaCl reststrahlen plate, sooted paraffin, and the crystalline quartz detector window. Energy peak in this record was produced by the blazing of the grating at this position. Slit width: 2 mm. Spectral slit width: 0.6 cm−1 at 210 cm−1.

Fig. 9
Fig. 9

Portions of the spectrum of ammonia vapor showing how well the components of the doublet are resolved. The separation of the components is about 1.3 cm−1. The three extra absorptions in the 101-micron region are due to residual water vapor.

Tables (1)

Tables Icon

Table I Relative intensities in the various spectral regions with ideal echelette grating used at blaze. Calculations based on Planck radiation law.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J λ = C 1 λ 5 ( e C 2 / λ T - 1 ) ,