Abstract

The simple formula suggested below contains, as a special case, the so-called Petzval formula, which gives the field curvature of an optical system in a form which contains a general invariant of the optical system and which is expressed by the powers alone, independent of the center distances.

Let x, y, z, be the coordinates of the object point, and the coordinate of a diapoint where the origins are assumed at the centers of the first and last surfaces, and where the z axis has the direction of the axis of symmetry. If ξν, ην, ζν are the direction cosines of the ray in the νth medium multiplied by nν, equations can be derived of the form

1xξ=1xξ+Σϕνξνξν1yη=1yη+Σϕνηνην,

whereas 1/zζ′ is given as a continued fraction containing ϕν/ζνζν′ and the center distances cν multiplied by ζν.

Equation (1) permits the computation of the contributions of the single surfaces to the diapoint errors. The values ϕν in (1) are the powers of the different surfaces for the ray. The quantity ϕν is practically equal to the Gaussian power of the surface (nν′−nν)/rν, an approximate equality permitting the prediction of the effect of a surface change on the quality of the image.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription