Abstract

A quantitative analysis of salts of the Dead Sea for their rubidium contents was carried out. It was found necessary to use the resonance lines of Rb (at 7800; 7948A) as analysis lines. To eliminate the effect of extraneous elements on the ratio of intensities of the Rb line and the internal standard line, the method of quantitative addition was chosen. This method could not be used without correction for the strong self-absorption of the Rb resonance lines. Taking into account this self-absorption, a corrected formula was deduced, and with this correction the analyses were carried out with good results for concentrations of rubidium chloride from 0.005 percent to 0.1 percent.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Brode and R. W. Silverthorn, Proceedings Sixth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1939), p. 60; W. R. Brode and J. L. Appleton, Proceedings Seventh Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1940), p. 36.
  2. E. Fast and J. R. Nielsen, J. Opt. Soc. Am. 37, 614 (1947).
    [CrossRef]
  3. T. T. Borovic-Romanova, C. R. Acad. Sci. U.S.S.R. 21, 328 (1938).
  4. S. A. Borovik and T. Borovik-Romanova, Izvest. Akad. Nauk. U.S.S.R.161 (1948).
  5. Horst Putzmann, Spectrochim. Acta 1, 408 (1940).
  6. M. F. Hasler, Proceedings Fifth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1938), p. 43.
  7. Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).
  8. V. Henri, “Resultats de l’analyse spectrale des sels contenus dans la Mer Morte,” 1938 special for the Palestine Potash Ltd.
  9. See, for example, Muller-Pouillet, Lehrbuch der Physik, 11. Auflage, II, Optik p. 1646.
  10. G. Scheibling, Bull. soc. fran. minéral 7, 259 (1948).
  11. G. L. Gouy, Ann. chim. et phys. 18, 5 (1879).
  12. R. Mankopff, Spectrochim. Acta 1, 197 (1939).
    [CrossRef]
  13. R. Ladenburg and F. Reiche, Ann. phys. 42, 181 (1913).
    [CrossRef]
  14. W. Schutz, Z. Physik 71, 301 (1931).
    [CrossRef]

1948 (2)

S. A. Borovik and T. Borovik-Romanova, Izvest. Akad. Nauk. U.S.S.R.161 (1948).

G. Scheibling, Bull. soc. fran. minéral 7, 259 (1948).

1947 (1)

1940 (1)

Horst Putzmann, Spectrochim. Acta 1, 408 (1940).

1939 (1)

R. Mankopff, Spectrochim. Acta 1, 197 (1939).
[CrossRef]

1938 (1)

T. T. Borovic-Romanova, C. R. Acad. Sci. U.S.S.R. 21, 328 (1938).

1936 (1)

Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).

1931 (1)

W. Schutz, Z. Physik 71, 301 (1931).
[CrossRef]

1913 (1)

R. Ladenburg and F. Reiche, Ann. phys. 42, 181 (1913).
[CrossRef]

1879 (1)

G. L. Gouy, Ann. chim. et phys. 18, 5 (1879).

Borovic-Romanova, T. T.

T. T. Borovic-Romanova, C. R. Acad. Sci. U.S.S.R. 21, 328 (1938).

Borovik, S. A.

S. A. Borovik and T. Borovik-Romanova, Izvest. Akad. Nauk. U.S.S.R.161 (1948).

Borovik-Romanova, T.

S. A. Borovik and T. Borovik-Romanova, Izvest. Akad. Nauk. U.S.S.R.161 (1948).

Brode, W. R.

W. R. Brode and R. W. Silverthorn, Proceedings Sixth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1939), p. 60; W. R. Brode and J. L. Appleton, Proceedings Seventh Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1940), p. 36.

Fast, E.

Foster,

Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).

Gouy, G. L.

G. L. Gouy, Ann. chim. et phys. 18, 5 (1879).

Hasler, M. F.

M. F. Hasler, Proceedings Fifth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1938), p. 43.

Henri, V.

V. Henri, “Resultats de l’analyse spectrale des sels contenus dans la Mer Morte,” 1938 special for the Palestine Potash Ltd.

Ladenburg, R.

R. Ladenburg and F. Reiche, Ann. phys. 42, 181 (1913).
[CrossRef]

Langstroth,

Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).

Mankopff, R.

R. Mankopff, Spectrochim. Acta 1, 197 (1939).
[CrossRef]

McRae,

Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).

Muller-Pouillet,

See, for example, Muller-Pouillet, Lehrbuch der Physik, 11. Auflage, II, Optik p. 1646.

Nielsen, J. R.

Putzmann, Horst

Horst Putzmann, Spectrochim. Acta 1, 408 (1940).

Reiche, F.

R. Ladenburg and F. Reiche, Ann. phys. 42, 181 (1913).
[CrossRef]

Scheibling, G.

G. Scheibling, Bull. soc. fran. minéral 7, 259 (1948).

Schutz, W.

W. Schutz, Z. Physik 71, 301 (1931).
[CrossRef]

Silverthorn, R. W.

W. R. Brode and R. W. Silverthorn, Proceedings Sixth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1939), p. 60; W. R. Brode and J. L. Appleton, Proceedings Seventh Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1940), p. 36.

Ann. chim. et phys. (1)

G. L. Gouy, Ann. chim. et phys. 18, 5 (1879).

Ann. phys. (1)

R. Ladenburg and F. Reiche, Ann. phys. 42, 181 (1913).
[CrossRef]

Bull. soc. fran. minéral (1)

G. Scheibling, Bull. soc. fran. minéral 7, 259 (1948).

C. R. Acad. Sci. U.S.S.R. (1)

T. T. Borovic-Romanova, C. R. Acad. Sci. U.S.S.R. 21, 328 (1938).

Izvest. Akad. Nauk. U.S.S.R. (1)

S. A. Borovik and T. Borovik-Romanova, Izvest. Akad. Nauk. U.S.S.R.161 (1948).

J. Opt. Soc. Am. (1)

Proc. Roy. Soc. (London) (1)

Foster, Langstroth, and McRae, Proc. Roy. Soc. (London) A153, 141 (1936).

Spectrochim. Acta (2)

R. Mankopff, Spectrochim. Acta 1, 197 (1939).
[CrossRef]

Horst Putzmann, Spectrochim. Acta 1, 408 (1940).

Z. Physik (1)

W. Schutz, Z. Physik 71, 301 (1931).
[CrossRef]

Other (4)

W. R. Brode and R. W. Silverthorn, Proceedings Sixth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1939), p. 60; W. R. Brode and J. L. Appleton, Proceedings Seventh Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1940), p. 36.

M. F. Hasler, Proceedings Fifth Summer Conference on Spectroscopy and Its Applications (John Wiley and Sons, Inc., New York, 1938), p. 43.

V. Henri, “Resultats de l’analyse spectrale des sels contenus dans la Mer Morte,” 1938 special for the Palestine Potash Ltd.

See, for example, Muller-Pouillet, Lehrbuch der Physik, 11. Auflage, II, Optik p. 1646.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic representation of the arc.

Fig. 2
Fig. 2

The system of illumination of the slit of the spectrograph.

Fig. 3
Fig. 3

An enlarged photograph of a double exposure by the “method of double lines.”

Fig. 4
Fig. 4

Variations in intensity ratios along the arc (see in the text).

Fig. 5
Fig. 5

The “Gouy curve” for the doublet of the Rb resonance lines (7800; 7948A).

Tables (2)

Tables Icon

Table I Typical examples of Rb determinations by the method of “quantitative addition.” m1 is the concentration of Rb as calculated by Eq. (1) (without any correction for self-absorption). m3 is that calculated by the corrected formula (Eq. (7)) and m2 is obtained from Eq. (7) to its first approximation. The s’s give the corresponding deviation from the known concentrations. Calculations are given for the spectral line RB 7948A, and then (to the right) also for the line Rb 7800A.

Tables Icon

Table II Some results of determinations of Rb in concentrations from 0.05 percent to 0.1 percent. The data were obtained with the correction formula (Eq. (7A)). a is the quantitative addition, m—the calculated concentration, and m ¯—the average of the few determinations for each sample. Where known from preparation of the sample, this concentration is given in brackets.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

m = a / K - 1.
E ( ν , T ) = N h ν a m n g n e - h ν / k T .
J ( ν , T ) = J 0 ( ν , T ) d x e - μ ν x ,
I ( ν , T ) = 0 d J 0 ( ν , T ) e - μ ν x d x = J 0 μ ν ( 1 - e - μ ν d ) .
I m = I 0 ( 1 - e - c ν m ) .
I M = I 0 ( 1 - e - c ν M ) .
K = I M I m = 1 - e - c ν ( m + a ) 1 - e - c ν m ,
m = 1 c ν ln e - a c ν - K 1 - K .
f m = I 02 ( 1 - e - 2 c ν 1 m ) I 01 ( 1 - e - c ν 1 m ) = 1 + e - c ν 1 m
f M = 1 + e - c ν 1 ( m + a ) .
e - a c ν 1 = f M - 1 f m - 1 = F ;             c ν 1 = 1 a ln 1 F .
m = a ln ( F - K 1 / 1 - K 1 ) ln ( 1 / F ) ;
r 1 = 1 - F K 1 - 1 ;             s 1 = 1 - F F
m = a r 1 - 1 2 r 1 2 + 1 3 r 1 3 - + s 1 - 1 2 s 1 2 + 1 3 s 1 3 - + ,
m = a r 1 s 1 = a K 1 - 1 F ,
m = a 2 r 2 - 1 2 r 2 2 + 1 3 r 2 3 - + s 2 - 1 2 s 2 2 + 1 3 s 2 3 - + ,
r 2 = 1 - F 2 K 2 - 1 ;             s 2 = s 1 .
m = a K 2 - 1 F 1 + F 2 .
( Σ s / n ) 1 2 = ( 670 / 29 ) 1 2 = ( 23 ) 1 2 = 4.8 percent .