Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. M. Malpica and T. M. Berry, Gen. Elec. Rev. 44, 563 (1941).
  2. F. Kemmler, German patent No. 712654, 1941.
  3. Z. Nähring, Messtech. 18, 113 (1943).
  4. C. Braudo and H. R. Clayton, Nature 157, 622 (1946).
    [Crossref]
  5. C. Braudo and H. R. Clayton, J. Soc. Chem. Ind. (London) 66, 259 (1947).
    [Crossref]
  6. Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
    [Crossref]
  7. The British Aluminum Company, Ltd., “Analysis of aluminum and its alloys” (1949).
  8. R. J. Dwyer, J. Opt. Soc. Am. 40, 180 (1950).
    [Crossref]

1950 (1)

1949 (2)

Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
[Crossref]

The British Aluminum Company, Ltd., “Analysis of aluminum and its alloys” (1949).

1947 (1)

C. Braudo and H. R. Clayton, J. Soc. Chem. Ind. (London) 66, 259 (1947).
[Crossref]

1946 (1)

C. Braudo and H. R. Clayton, Nature 157, 622 (1946).
[Crossref]

1943 (1)

Z. Nähring, Messtech. 18, 113 (1943).

1941 (1)

J. T. M. Malpica and T. M. Berry, Gen. Elec. Rev. 44, 563 (1941).

Berry, T. M.

J. T. M. Malpica and T. M. Berry, Gen. Elec. Rev. 44, 563 (1941).

Braudo,

Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
[Crossref]

Braudo, C.

C. Braudo and H. R. Clayton, J. Soc. Chem. Ind. (London) 66, 259 (1947).
[Crossref]

C. Braudo and H. R. Clayton, Nature 157, 622 (1946).
[Crossref]

Clayton, H. R.

C. Braudo and H. R. Clayton, J. Soc. Chem. Ind. (London) 66, 259 (1947).
[Crossref]

C. Braudo and H. R. Clayton, Nature 157, 622 (1946).
[Crossref]

Craggs,

Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
[Crossref]

Dwyer, R. J.

Kemmler, F.

F. Kemmler, German patent No. 712654, 1941.

Malpica, J. T. M.

J. T. M. Malpica and T. M. Berry, Gen. Elec. Rev. 44, 563 (1941).

Nähring, Z.

Z. Nähring, Messtech. 18, 113 (1943).

Williams,

Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
[Crossref]

Analysis of aluminum and its alloys (1)

The British Aluminum Company, Ltd., “Analysis of aluminum and its alloys” (1949).

Gen. Elec. Rev. (1)

J. T. M. Malpica and T. M. Berry, Gen. Elec. Rev. 44, 563 (1941).

J. Opt. Soc. Am. (1)

J. Soc. Chem. Ind. (London) (1)

C. Braudo and H. R. Clayton, J. Soc. Chem. Ind. (London) 66, 259 (1947).
[Crossref]

Messtech. (1)

Z. Nähring, Messtech. 18, 113 (1943).

Nature (1)

C. Braudo and H. R. Clayton, Nature 157, 622 (1946).
[Crossref]

Spectrochim. Acta (1)

Braudo, Craggs, and Williams, Spectrochim. Acta 3, 546 (1949).
[Crossref]

Other (1)

F. Kemmler, German patent No. 712654, 1941.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Electronically controlled ac interrupted arc source for spectrographic purposes. Wiring diagram. (1) Arc circuit; (2) thyratron controlled ignitor circuit; (3) pulse generating circuit; (4) phase-shifting circuit; (5) (5a) (6) voltage supplies; C1=0.1 microfarad, 500 v; C2=0.1 microfarad, 500 v; C3=0.00005 microfarad, 10,000 v; C4=0.05 microfarad, 3500 v; C5=0.5 microfarad, 3500 v; C6=1.0 microfarad, 500 v; C7=0.05 microfarad 1500 v; C8=16 microfarad 450/500 v (electrolytic); C9=variable according to Table I; C10=variable according to Table I; C11=16 microfarad 450/50 v (electrolytic); C12=4 microfarad 500 v; C13=6 microfarad 500 v; L1=0.35 mh; L2=0.35 mh; L3=iron cored twin choke, min 20+20 H, max 500+500 ohm; R=75 ohm, 10A rheostat; R1=0.03 megohm, 12 w, wire resistor; R2=0.01 megohm, 1 w, carbon resistor; R3=0.05 megohm, 1 w, carbon resistor; R4=0.02 megohm, 2 w, potentiometer; R5=0.05 megohm, 3 w, carbon resistor; R6=0.2 megohm, 1 w, carbon resistor; R7=0.2 megohm, 1 w, carbon resistor; R8=variable according to Table I, carbon resistor; R9=variable according to Table I, carbon resistor; R10=0 −0.01 megohm, 3 w, wire potentiometer; R11=0.01 megohm, 6 w, wire resistor; R12=0.01 megohm, 6 w, wire resistor; R13=5000 ohm, 6 w, wire resistor; ECC40=twin triode; GRG 250/3000=thyratron tube; V22/7000=rectifier tube; 6×4=rectifier tube; T=Tesla transformer. Primary: 10 turns on 110-mm diameter, wire diameter 3 mm, secondary: 250 turns on 80-mm diameter, wire diameter 1 mm; T1=transformer with a ratio of 2:1, primary self-inductance 25H min; T2=transformer 220/25 v; T3=transformer 220/2×320 v, max 40 mA, 3×6.3 v, max 1A; T4=transformer 220/1600 v, max 20 mA, 6.3 v, max 1A, 2.5 v, max 5A; I=arc gap.

Fig. 2
Fig. 2

Voltage conditions in arc gap I of Fig. 1. Frequencies of the multivibrator: (a) 1/1·50/sec; (b) 1/2·50/sec; (c) 1/3·50/sec; (d) 1/4·50/sec; (e) 1/5·50/sec; (f) 1/6·50/sec; (g) 1/7·50/sec; (h) 1/9·50/sec. The direction of the time scale is from right to left. The sine base wave is the voltage curve of the 50 counts/sec mains. The amplitude is 300 v.

Fig. 3
Fig. 3

The voltage course in arc gap I of the circuit shown in Fig. 1 if the arc is ignited at different phase positions. The frequency of the impulse generator is 1/3·50/sec. The amplitude of the voltage is 300 v. The sine base wave is the voltage curve of the 50 counts/sec mains. The time scale goes from right to left.

Tables (1)

Tables Icon

Table I R8, R9, C9, and C10 values belonging to the different frequencies of the impulse generating circuit marked 3 in Fig. 1.