Abstract

This work was undertaken with a view to study the effects, which may be produced, in the Fresnel diffraction patterns of narrow obstacles, keeping the boundary the same (namely straight) and changing the shape of the cross section. Visible monochromatic light was used as a source and photometric analysis of the intensity distribution patterns was made. The experimental curves deviate from those obtained according to the classical Fresnel-Kirchhoff theory of diffraction and show a boundary effect. If a comparison of the experimental curves for tapes and wires is made with the theoretical curves, the tape curves appear to be a little better in agreement than the wire curves. Additional experiments performed indicate that the observed deviations are not the result of surface reflections from the obstacles.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, Math. Ann. 47, 317 (1896).
    [Crossref]
  2. C. V. Raman and K. S. Krishnan, Proc. Phys. Soc. (London) 38, 350 (1926).
    [Crossref]
  3. W. Müller, Ann. phys. 11, 177 (1931).
    [Crossref]
  4. B. Eichstädt, Z. Physik 99, 301 (1936).
    [Crossref]
  5. G. L. Andrews, J. Appl. Phys. 21, 761 (1950).
    [Crossref]
  6. C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A116, 254 (1927).
    [Crossref]
  7. J. Savornin, Compt. rend. 199, 941 (1934).
  8. A. Fresnel, Ann. chim. et phys. 11, 246 (1809).
  9. C. Kirchhoff, Wied. Ann. 18, 663 (1883).
    [Crossref]
  10. W. v. Ignatowsky, Ann. phys. 23, 875 (1907); Ann. phys. 25, 99 (1908).
    [Crossref]
  11. A. Rubinowicz, Ann. phys. 53, 257 (1917).
    [Crossref]
  12. W. G. Bickley, Phil. Mag. 39, 668 (1920).
    [Crossref]
  13. E. T. Hanson, Trans. Roy. Soc. (London) 229A, 87 (1930).
    [Crossref]
  14. P. C. Clemnow, Proc. Roy. Soc. (London) 205A, 286 (1951).
    [Crossref]

1951 (1)

P. C. Clemnow, Proc. Roy. Soc. (London) 205A, 286 (1951).
[Crossref]

1950 (1)

G. L. Andrews, J. Appl. Phys. 21, 761 (1950).
[Crossref]

1936 (1)

B. Eichstädt, Z. Physik 99, 301 (1936).
[Crossref]

1934 (1)

J. Savornin, Compt. rend. 199, 941 (1934).

1931 (1)

W. Müller, Ann. phys. 11, 177 (1931).
[Crossref]

1930 (1)

E. T. Hanson, Trans. Roy. Soc. (London) 229A, 87 (1930).
[Crossref]

1927 (1)

C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A116, 254 (1927).
[Crossref]

1926 (1)

C. V. Raman and K. S. Krishnan, Proc. Phys. Soc. (London) 38, 350 (1926).
[Crossref]

1920 (1)

W. G. Bickley, Phil. Mag. 39, 668 (1920).
[Crossref]

1917 (1)

A. Rubinowicz, Ann. phys. 53, 257 (1917).
[Crossref]

1907 (1)

W. v. Ignatowsky, Ann. phys. 23, 875 (1907); Ann. phys. 25, 99 (1908).
[Crossref]

1896 (1)

A. Sommerfeld, Math. Ann. 47, 317 (1896).
[Crossref]

1883 (1)

C. Kirchhoff, Wied. Ann. 18, 663 (1883).
[Crossref]

1809 (1)

A. Fresnel, Ann. chim. et phys. 11, 246 (1809).

Andrews, G. L.

G. L. Andrews, J. Appl. Phys. 21, 761 (1950).
[Crossref]

Bickley, W. G.

W. G. Bickley, Phil. Mag. 39, 668 (1920).
[Crossref]

Clemnow, P. C.

P. C. Clemnow, Proc. Roy. Soc. (London) 205A, 286 (1951).
[Crossref]

Eichstädt, B.

B. Eichstädt, Z. Physik 99, 301 (1936).
[Crossref]

Fresnel, A.

A. Fresnel, Ann. chim. et phys. 11, 246 (1809).

Hanson, E. T.

E. T. Hanson, Trans. Roy. Soc. (London) 229A, 87 (1930).
[Crossref]

Ignatowsky, W. v.

W. v. Ignatowsky, Ann. phys. 23, 875 (1907); Ann. phys. 25, 99 (1908).
[Crossref]

Kirchhoff, C.

C. Kirchhoff, Wied. Ann. 18, 663 (1883).
[Crossref]

Krishnan, K. S.

C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A116, 254 (1927).
[Crossref]

C. V. Raman and K. S. Krishnan, Proc. Phys. Soc. (London) 38, 350 (1926).
[Crossref]

Müller, W.

W. Müller, Ann. phys. 11, 177 (1931).
[Crossref]

Raman, C. V.

C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A116, 254 (1927).
[Crossref]

C. V. Raman and K. S. Krishnan, Proc. Phys. Soc. (London) 38, 350 (1926).
[Crossref]

Rubinowicz, A.

A. Rubinowicz, Ann. phys. 53, 257 (1917).
[Crossref]

Savornin, J.

J. Savornin, Compt. rend. 199, 941 (1934).

Sommerfeld, A.

A. Sommerfeld, Math. Ann. 47, 317 (1896).
[Crossref]

Ann. chim. et phys. (1)

A. Fresnel, Ann. chim. et phys. 11, 246 (1809).

Ann. phys. (3)

W. Müller, Ann. phys. 11, 177 (1931).
[Crossref]

W. v. Ignatowsky, Ann. phys. 23, 875 (1907); Ann. phys. 25, 99 (1908).
[Crossref]

A. Rubinowicz, Ann. phys. 53, 257 (1917).
[Crossref]

Compt. rend. (1)

J. Savornin, Compt. rend. 199, 941 (1934).

J. Appl. Phys. (1)

G. L. Andrews, J. Appl. Phys. 21, 761 (1950).
[Crossref]

Math. Ann. (1)

A. Sommerfeld, Math. Ann. 47, 317 (1896).
[Crossref]

Phil. Mag. (1)

W. G. Bickley, Phil. Mag. 39, 668 (1920).
[Crossref]

Proc. Phys. Soc. (London) (1)

C. V. Raman and K. S. Krishnan, Proc. Phys. Soc. (London) 38, 350 (1926).
[Crossref]

Proc. Roy. Soc. (London) (2)

C. V. Raman and K. S. Krishnan, Proc. Roy. Soc. (London) A116, 254 (1927).
[Crossref]

P. C. Clemnow, Proc. Roy. Soc. (London) 205A, 286 (1951).
[Crossref]

Trans. Roy. Soc. (London) (1)

E. T. Hanson, Trans. Roy. Soc. (London) 229A, 87 (1930).
[Crossref]

Wied. Ann. (1)

C. Kirchhoff, Wied. Ann. 18, 663 (1883).
[Crossref]

Z. Physik (1)

B. Eichstädt, Z. Physik 99, 301 (1936).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the apparatus.

Fig. 2
Fig. 2

Microphotometer curves for cylindrical obstacles with different degrees of transparency.

Fig. 3
Fig. 3

Comparison of the experimental curves with the corresponding theoretical curve for tape A and wire A.

Fig. 4
Fig. 4

Transformed Cornu’s Spiral.

Fig. 5
Fig. 5

Comparison of microphotometer curves for both wire and tape, coated black and uncoated.

Tables (1)

Tables Icon

Table I Comparison of the experimental curves with the corresponding theoretical curves with the help of marks assigned for agreements and deviations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I = R 2 = γ 2 a b λ 2 ( a + b ) × { ( 0 v cos π v 2 2 d v ) 2 + ( 0 v sin π v 2 2 d v ) 2 } ,