Abstract

An interpretation of the infrared optical properties of gold smoke deposits is presented together with new experimental results. This interpretation is based on an application of classical electromagnetic theory. The gold smoke deposits are assumed to interact with infrared radiation as if they were sheets of an essentially uniform material which is characterized by an average electrical conductivity small compared to that of ordinary metals. The electrical conductivity of gold black deposits is found to be ~10−5 times that of bulk gold, and the volume percent of gold in a gold black deposit is found to be ~0.2 percent.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
    [Crossref]
  2. Harris, McGinnies, and Siegel, J. Opt. Soc. Am. 38, 582 (1948).
    [Crossref]
  3. G. Mie, Ann. Physik 25, 377 (1908).
    [Crossref]
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 268–278.
  5. Reference 4, p. 512.
  6. The preparation of the cellulose nitrate films and the calibration of their weights in terms of optical reflection measurements will be described in a later publication.
  7. Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
    [Crossref]
  8. Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).
  9. E. K. Plyler and J. J. Ball, J. Opt. Soc. Am. 38, 988 (1948).
    [Crossref]
  10. Reference 4, pp. 511–516.

1950 (1)

Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
[Crossref]

1948 (4)

Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).

Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
[Crossref]

Harris, McGinnies, and Siegel, J. Opt. Soc. Am. 38, 582 (1948).
[Crossref]

E. K. Plyler and J. J. Ball, J. Opt. Soc. Am. 38, 988 (1948).
[Crossref]

1908 (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Ball, J. J.

Burstein,

Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).

Harris,

Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
[Crossref]

Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
[Crossref]

Harris, McGinnies, and Siegel, J. Opt. Soc. Am. 38, 582 (1948).
[Crossref]

Jeffries,

Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
[Crossref]

Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
[Crossref]

McGinnies,

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Oberly,

Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).

Plyler,

Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).

Plyler, E. K.

Siegel,

Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
[Crossref]

Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
[Crossref]

Harris, McGinnies, and Siegel, J. Opt. Soc. Am. 38, 582 (1948).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 268–278.

Ann. Physik (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

J. Appl. Phys. (1)

Harris, Jeffries, and Siegel, J. Appl. Phys. 19, 791 (1948).
[Crossref]

J. Chem. Phys. (1)

Harris, Jeffries, and Siegel, J. Chem. Phys. 18, 261 (1950).
[Crossref]

J. Opt. Soc. Am. (2)

Proc. Indian Acad. Sci. (1)

Burstein, Oberly, and Plyler, Proc. Indian Acad. Sci. 28, 388 (1948).

Other (4)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 268–278.

Reference 4, p. 512.

The preparation of the cellulose nitrate films and the calibration of their weights in terms of optical reflection measurements will be described in a later publication.

Reference 4, pp. 511–516.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Electron microscope photograph of a gold black deposit.

Fig. 2
Fig. 2

Infrared transmission of gold filters.

Fig. 3
Fig. 3

Infrared transmission of gold blacks.

Fig. 4
Fig. 4

Optical density of gold black deposits on cellulose nitrate.

Fig. 5
Fig. 5

Conductance of gold black deposits.

Fig. 6
Fig. 6

Optical microscope photographs of gold black deposits.

Tables (1)

Tables Icon

Table I Volume percent of solid gold in gold black deposits.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 exp [ i 2 π ν t ] exp [ i 2 π / λ ( n + i k ) x ] = E 0 exp [ i 2 π ν t ] exp [ i α x ] exp [ - β x ] ,
α = ω { ( μ ɛ / 2 ) [ ( 1 + η 2 ) 1 2 + 1 ] } 1 2
β = ω { ( μ ɛ / 2 ) [ ( 1 + η 2 ) 1 2 - 1 ] } 1 2 ,
η = ( 376.7 / 2 π ) σ λ ,
c = [ 1 / ( μ 0 ɛ 0 ) 1 2 ] = ν λ = ( ω / 2 π ) λ .
α = ( 2 π / λ ) [ 1 + 1 8 η 2 + ] ,
β = ( 2 π / λ ) [ 1 2 η ( 1 - 1 8 η 2 + ) ] .
T E ( x = d ) / E ( x = 0 ) 2 exp [ - 2 β d ] .
log e ( 1 / T ) 2 β d 376.7 σ × d [ 1 - 450 ( σ λ ) 2 + ] .
R = ( n - 1 ) 2 + k 2 ( n + 1 ) 2 + k 2 = [ α - ( 2 π / λ ) ] 2 + β 2 [ α + ( 2 π / λ ) ] 2 + β 2 .
R η 2 / 16 to the first power of η 2 ,
R 225 σ 2 λ 2 .
resistance = ρ ( l / w d ) = ( 1 / σ d c ) ( l / w d ) ,
σ d c × d = ( l / w ) ( 1 / resistance ) .
log 10 ( 1 / T ) = 0.0113 × wt. ( g / cm 2 × 10 - 6 )
σ d c × d × 10 3 = 0.0394 × wt. ( g / cm 2 × 10 - 6 )
log e ( 1 / T ) = 660 σ d c × d             ( experimental )
log e ( 1 / T ) = 367.7 σ I R × d             ( theoretical )