Abstract

Gaseous mixtures of hydrogen and deuterium from 85 to 100 percent deuterium have been rapidly analyzed spectroscopically to within 0.1 percent of the major component. A 150-megacycle electrodeless discharge in flowing gas has been used. Under typical conditions the value of the measured intensity ratio was found to vary with pressure in an unexplained manner. The addition of air up to 2.5 percent has not affected the measured isotope ratio.

© 1952 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. B. Vincent and R. A. Sawyer, Metal Progress 36, 35 (1939).
  2. A. Van Tiggelen, Bull. soc. chim. Belges 55, 133 (1946).
    [Crossref]
  3. G. H. Dieke, (February1, 1950), p. 2.
  4. W. G. Fastie, J. Opt. Soc. Am. 40, 800 (1950).
  5. R. D. Cowan and G. H. Dieke, Revs. Mod. Phys. 20, 418 (1948).
    [Crossref]
  6. G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition, Vol. I, pp. 531–533.
  7. S. C. Brown and A. D. McDonald, Phys. Rev. 76, 1629 (1949).
    [Crossref]

1950 (1)

W. G. Fastie, J. Opt. Soc. Am. 40, 800 (1950).

1949 (1)

S. C. Brown and A. D. McDonald, Phys. Rev. 76, 1629 (1949).
[Crossref]

1948 (1)

R. D. Cowan and G. H. Dieke, Revs. Mod. Phys. 20, 418 (1948).
[Crossref]

1946 (1)

A. Van Tiggelen, Bull. soc. chim. Belges 55, 133 (1946).
[Crossref]

1939 (1)

H. B. Vincent and R. A. Sawyer, Metal Progress 36, 35 (1939).

Brown, S. C.

S. C. Brown and A. D. McDonald, Phys. Rev. 76, 1629 (1949).
[Crossref]

Cowan, R. D.

R. D. Cowan and G. H. Dieke, Revs. Mod. Phys. 20, 418 (1948).
[Crossref]

Dieke, G. H.

R. D. Cowan and G. H. Dieke, Revs. Mod. Phys. 20, 418 (1948).
[Crossref]

G. H. Dieke, (February1, 1950), p. 2.

Fastie, W. G.

W. G. Fastie, J. Opt. Soc. Am. 40, 800 (1950).

Herzberg, G.

G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition, Vol. I, pp. 531–533.

McDonald, A. D.

S. C. Brown and A. D. McDonald, Phys. Rev. 76, 1629 (1949).
[Crossref]

Sawyer, R. A.

H. B. Vincent and R. A. Sawyer, Metal Progress 36, 35 (1939).

Van Tiggelen, A.

A. Van Tiggelen, Bull. soc. chim. Belges 55, 133 (1946).
[Crossref]

Vincent, H. B.

H. B. Vincent and R. A. Sawyer, Metal Progress 36, 35 (1939).

Bull. soc. chim. Belges (1)

A. Van Tiggelen, Bull. soc. chim. Belges 55, 133 (1946).
[Crossref]

J. Opt. Soc. Am. (1)

W. G. Fastie, J. Opt. Soc. Am. 40, 800 (1950).

Metal Progress (1)

H. B. Vincent and R. A. Sawyer, Metal Progress 36, 35 (1939).

Phys. Rev. (1)

S. C. Brown and A. D. McDonald, Phys. Rev. 76, 1629 (1949).
[Crossref]

Revs. Mod. Phys. (1)

R. D. Cowan and G. H. Dieke, Revs. Mod. Phys. 20, 418 (1948).
[Crossref]

Other (2)

G. Herzberg, Molecular Spectra and Molecular Structure (D. Van Nostrand Company, Inc., New York, 1950), second edition, Vol. I, pp. 531–533.

G. H. Dieke, (February1, 1950), p. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical System. D, hydrogen discharge; L, condensing lens; S1, entrance slit; S2, exit slit; M, spherical mirror; G, diffraction grating; P, photomultiplier tube.

Fig. 2
Fig. 2

Scanning monochromator with photomultiplier recorder.

Fig. 3
Fig. 3

Hydrogen-deuterium analysis. Leeds and Northrup monochromator.

Fig. 4
Fig. 4

Discharge tube with quarter-wavelength line from 150-Mc source.

Fig. 5
Fig. 5

Hydrogen discharge flow system.

Fig. 6
Fig. 6

Measured intensity ratio D/H vs intensity (D) at various pressures for 89.9 percent D2 sample (8-mm ID discharge tube, 150 megacycles/second source).

Fig. 7
Fig. 7

Measured intensity ratio D/H vs intensity (D) at various pressures for 94.2 percent D2 sample (8-mm ID discharge tube, 150 megacycles/second source).

Fig. 8
Fig. 8

Measured intensity ratio D/H vs intensity (D) at various pressures for 97.5 percent D2 sample (8-mm ID discharge tube, 150 megacycles/second source).

Fig. 9
Fig. 9

Measured intensity ratio D/H vs reciprocal of the pressure for 89.9 percent D2, 94.2 percent D2, 97.5 percent D2 samples.

Fig. 10
Fig. 10

Optimum conditions for D2 analysis (8-mm discharge tube, 150 megacycles/second source).

Tables (1)

Tables Icon

Table I Balmer line isotope shifts.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

C = D / ( D + H ) ,
δ C C = H δ D - D δ H D ( D + H ) = ( H D δ D - δ H ) 1 D + H .
δ C / C = ( 0.11 δ D - δ H ) / ( D + H ) δ H / D .
δ C C = δ ( D / H ) ( D / H ) ( D / H + 1 ) .
δ C C = δ ( D / H ) ( D / H ) 2 0.005 ,
δ ( D / H ) 0.005 ( D / H ) 2 .