Abstract

The purpose of this experiment is to investigate the variation in critical fusion frequency with brightness for various positions in the test field.

Critical frequency curves for brightnesses between −3 and +3 log millilamberts were determined for a 2° test field of green light at the fovea and at 10°, 20°, 30°, and 40° in the periphery. The procedure used allowed an image of a 2-mm circular aperture to be focused in the plane of the pupil. Tests showed that astigmatism did not influence the data obtained for the peripheral stimuli.

The curve of log critical frequency against log brightness for foveal observation does not show an inflection in its rise to a maximum. The curves for peripheral observations rise to a plateau at low brightnesses, dip at medium to low brightnesses, and rise again to a maximum, thus giving the conventional “cone” curve at high brightnesses. The maximum is lower and lower for locations increasingly distant from the fovea.

Data on color thresholds indicate that rods probably make their contributions to the initial part of the “cone” branch.

Comparison of data for green and white central fields shows that these colors give data that superimpose for equivalent foveal stimulation. For peripheral stimulation a slight shift of the curve for green (with respect to the curve for white) seems to occur in the direction of lower brightnesses. The latter effect is interpreted to be a Purkinje shift.

The Purkinje shift is greatly emphasized when orange and green peripheral fields are used. Green light, matched foveally with orange light, is more effective than orange in providing peripheral flicker.

The data are interpreted to mean that rods function and interact with cones at levels of brightness that are often considered to be photopic.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).
  2. J. v. Kries, Z. Psychol. Physiol. Sinnes. 9, 81 (1896); Handbuch norm. pathol. Physiol. 12, 678 (1929).
  3. S. Hecht, Physiol. Revs. 17, 239 (1937).
  4. W. J. Crozier and E. Wolf, J. Gen. Physiol. 25, 369 (1942).
  5. H. V. Walters and W. D. Wright, Proc. Roy. Soc. (London) (B) 131, 340 (1943).
    [Crossref]
  6. Riggs, Berry, and Wayner, J. Opt. Soc. Am. 39, 427 (1949).
    [Crossref] [PubMed]
  7. S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).S. Hecht and C. D. Verrijp, Proc. Natl. Acad. Sci. 19, 522 (1933). Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935). S. Hecht and S. Shlaer, J. Gen. Physiol,  19, 965 (1936).
    [Crossref]
  8. R. Davis and K. S. Gibson, Misc. Publications, Bur. Standards No. 114 (U. S. Gov. Printing Office, Washington, 1931), P. 22.
  9. Handbook of Chemistry and Physics (Chemical Rubber Publishing Company, Cleveland, 1941), 25th edition, p. 2155.
  10. Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
    [Crossref]
  11. S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).
  12. R. Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947).
  13. V. V. Lloyd, “A Comparison of Critical Fusion Frequencies for Different Areas in the Fovea and the Periphery” (unpublished doctoral dissertation, Columbia University, 1951).

1949 (1)

1943 (1)

H. V. Walters and W. D. Wright, Proc. Roy. Soc. (London) (B) 131, 340 (1943).
[Crossref]

1942 (1)

W. J. Crozier and E. Wolf, J. Gen. Physiol. 25, 369 (1942).

1937 (1)

S. Hecht, Physiol. Revs. 17, 239 (1937).

1935 (1)

Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
[Crossref]

1933 (2)

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).S. Hecht and C. D. Verrijp, Proc. Natl. Acad. Sci. 19, 522 (1933). Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935). S. Hecht and S. Shlaer, J. Gen. Physiol,  19, 965 (1936).
[Crossref]

1896 (1)

J. v. Kries, Z. Psychol. Physiol. Sinnes. 9, 81 (1896); Handbuch norm. pathol. Physiol. 12, 678 (1929).

Berry,

Crozier, W. J.

W. J. Crozier and E. Wolf, J. Gen. Physiol. 25, 369 (1942).

Davis, R.

R. Davis and K. S. Gibson, Misc. Publications, Bur. Standards No. 114 (U. S. Gov. Printing Office, Washington, 1931), P. 22.

Gibson, K. S.

R. Davis and K. S. Gibson, Misc. Publications, Bur. Standards No. 114 (U. S. Gov. Printing Office, Washington, 1931), P. 22.

Granit, R.

R. Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947).

Hecht,

Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
[Crossref]

Hecht, S.

S. Hecht, Physiol. Revs. 17, 239 (1937).

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).S. Hecht and C. D. Verrijp, Proc. Natl. Acad. Sci. 19, 522 (1933). Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935). S. Hecht and S. Shlaer, J. Gen. Physiol,  19, 965 (1936).
[Crossref]

Kries, J. v.

J. v. Kries, Z. Psychol. Physiol. Sinnes. 9, 81 (1896); Handbuch norm. pathol. Physiol. 12, 678 (1929).

Lloyd, V. V.

V. V. Lloyd, “A Comparison of Critical Fusion Frequencies for Different Areas in the Fovea and the Periphery” (unpublished doctoral dissertation, Columbia University, 1951).

Polyak, S. L.

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

Riggs,

Shlaer,

Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
[Crossref]

Smith,

Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
[Crossref]

Verrijp, C. D.

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).S. Hecht and C. D. Verrijp, Proc. Natl. Acad. Sci. 19, 522 (1933). Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935). S. Hecht and S. Shlaer, J. Gen. Physiol,  19, 965 (1936).
[Crossref]

Walters, H. V.

H. V. Walters and W. D. Wright, Proc. Roy. Soc. (London) (B) 131, 340 (1943).
[Crossref]

Wayner,

Wolf, E.

W. J. Crozier and E. Wolf, J. Gen. Physiol. 25, 369 (1942).

Wright, W. D.

H. V. Walters and W. D. Wright, Proc. Roy. Soc. (London) (B) 131, 340 (1943).
[Crossref]

Cold Spring Harbor Symposia on Quant. Biol. (1)

Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935).
[Crossref]

J. Gen. Physiol. (3)

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).

W. J. Crozier and E. Wolf, J. Gen. Physiol. 25, 369 (1942).

S. Hecht and C. D. Verrijp, J. Gen. Physiol. 17, 251 (1933).S. Hecht and C. D. Verrijp, Proc. Natl. Acad. Sci. 19, 522 (1933). Hecht, Shlaer, and Smith, Cold Spring Harbor Symposia on Quant. Biol. 3, 237 (1935). S. Hecht and S. Shlaer, J. Gen. Physiol,  19, 965 (1936).
[Crossref]

J. Opt. Soc. Am. (1)

Physiol. Revs. (1)

S. Hecht, Physiol. Revs. 17, 239 (1937).

Proc. Roy. Soc. (London) (B) (1)

H. V. Walters and W. D. Wright, Proc. Roy. Soc. (London) (B) 131, 340 (1943).
[Crossref]

Z. Psychol. Physiol. Sinnes. (1)

J. v. Kries, Z. Psychol. Physiol. Sinnes. 9, 81 (1896); Handbuch norm. pathol. Physiol. 12, 678 (1929).

Other (5)

S. L. Polyak, The Retina (University of Chicago Press, Chicago, 1941).

R. Davis and K. S. Gibson, Misc. Publications, Bur. Standards No. 114 (U. S. Gov. Printing Office, Washington, 1931), P. 22.

Handbook of Chemistry and Physics (Chemical Rubber Publishing Company, Cleveland, 1941), 25th edition, p. 2155.

R. Granit, Sensory Mechanisms of the Retina (Oxford University Press, London, 1947).

V. V. Lloyd, “A Comparison of Critical Fusion Frequencies for Different Areas in the Fovea and the Periphery” (unpublished doctoral dissertation, Columbia University, 1951).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(A) Schematic diagram of the optical system of the apparatus (see text). (B) Relative visual effectiveness of the light sources. The curve for white light is the product of the energy distribution for the 3000°K color-temperature of the lamp and the I.C.I. photopic visibility curve. The curves for green and orange light are the product of the white curve and the transmission of the respective color filter. The peaks of the three curves have been set equal to 1.0.

Fig. 2
Fig. 2

Average log critical fusion frequency (CFF) as a function of log brightness for two subjects at different retinal locations. The data for peripheral fixation are lowered in steps of 0.25 log units of frequency for comparison purposes. The figures on the right ordinate axis locate log critical fusion frequency = 1.5 for each curve.

Fig. 3
Fig. 3

Average log critical frequency as a function of log brightness for two subjects at different retinal locations. The curves reach lower and lower maxima as the stimulus is presented more and more peripherally.

Fig. 4
Fig. 4

The brightnesses at which color is perceived for different retinal locations. The upper and lower bar in each pair represent the responses of EHG and DEP, respectively.

Fig. 5
Fig. 5

A comparison of foveal and peripheral critical frequency (CFF) for green and white light. The photometric values of the green light were determined by heterochromatic match; the photometric values are used for both periphery and fovea.

Fig. 6
Fig. 6

A comparison of foveal and peripheral critical frequency (CFF) for green and orange light. The brightness values apply to foveal data; i.e., equivalent white light values were ascertained by heterochromatic match. The heterochromatic match applies only to the green light. Matching for the orange light is accomplished by determining the I values that are required for superposition. “Matched” brightness values for orange are used for both the periphery and fovea.

Tables (3)

Tables Icon

Table I Comparison of log critical fusion frequency at various brightnesses for 40° fixation with and without a −4 diopter cylindrical lens axis 180°, which corrects for astigmatism due to oblique incidence. Critical fusion frequency is expressed as the number of flashes of light per second.

Tables Icon

Table II Critical fusion frequency data for each subject at five retinal locations with a green test field 2° in diameter. The data are in log critical fusion frequency units. EHG and DEP refer to individual subjects.

Tables Icon

Table III Critical fusion frequency data for each subject at two retinal locations with a white test field 2° in diameter. The data are in log critical fusion frequency units.