Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, J. Opt. Soc. Am. 39, 859 (1949).
    [Crossref]
  2. For a detailed classical treatment see S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950), pp. 24–37.
  3. P. A. M. Dirac, Quantum Mechanics (Clarendon Press, Oxford, 1947), third edition, p. 7.
  4. Such a “density” matrix has been introduced in a more general context in the quantum theory of measurement by J. vonNeumann, Gött. Nachr. p. 245 (1927).
  5. J. E. MacDonald, thesis, University of Notre Dame, 1951; D. R. Hamilton, Astrophys. J. 106, 457 (1947).
    [Crossref]

1949 (1)

1927 (1)

Such a “density” matrix has been introduced in a more general context in the quantum theory of measurement by J. vonNeumann, Gött. Nachr. p. 245 (1927).

Chandrasekhar, S.

For a detailed classical treatment see S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950), pp. 24–37.

Dirac, P. A. M.

P. A. M. Dirac, Quantum Mechanics (Clarendon Press, Oxford, 1947), third edition, p. 7.

Fano, U.

MacDonald, J. E.

J. E. MacDonald, thesis, University of Notre Dame, 1951; D. R. Hamilton, Astrophys. J. 106, 457 (1947).
[Crossref]

vonNeumann, J.

Such a “density” matrix has been introduced in a more general context in the quantum theory of measurement by J. vonNeumann, Gött. Nachr. p. 245 (1927).

Gött. Nachr. (1)

Such a “density” matrix has been introduced in a more general context in the quantum theory of measurement by J. vonNeumann, Gött. Nachr. p. 245 (1927).

J. Opt. Soc. Am. (1)

Other (3)

For a detailed classical treatment see S. Chandrasekhar, Radiative Transfer (Clarendon Press, Oxford, 1950), pp. 24–37.

P. A. M. Dirac, Quantum Mechanics (Clarendon Press, Oxford, 1947), third edition, p. 7.

J. E. MacDonald, thesis, University of Notre Dame, 1951; D. R. Hamilton, Astrophys. J. 106, 457 (1947).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ψ = c 1 φ 1 + c 2 φ 2
I = ρ 11 + ρ 22 , Q = ρ 11 - ρ 22 , U = ρ 12 + ρ 21 , V = i ( ρ 21 - ρ 12 )
ρ i j = Σ α , β c i α c i β * α , β = 1 , , N .
ρ i j Av = Σ α , β c i α c j β * Av = Σ α c i α c j β * = Σ α ρ i j α .