Abstract

The emission spectra of a representative group of inorganic solid phosphors have been measured at temperatures as low as 4°K. Of the phosphors investigated, only those having “edge” emission show a tendency to exhibit a line spectrum at low temperatures; the ordinary impurity activated materials show little or no change in emission below 100°K. It is improbable that the breadth of emission is due to the interaction of the luminescent center with impurities or lattice defects since neither cold work nor variation in concentrations of impurities affects the breadth of emission. Possible explanations of the broad band, low temperature emission are the existence of a zero-point vibrational energy of a nonphotoconducting luminescent center in its excited state; and, in the case of photoconducting phosphors, the distortion of exciton and conduction levels near the luminescent center.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Randall, Nature 142, 113 (1938). J. T. Randall, Proc. Roy. Soc. (London) 170, 272 (1939). J. T. Randall, Trans. Faraday Soc. 35, 2 (1939).
    [Crossref]
  2. R. Peierls, Ann. Physik 13, 905 (1932).
    [Crossref]
  3. F. Urbach, Sitzber. Akad. Wiss. Wien, Math.-naturw Klasse, Abt. IIa 138, 389 (1929); Abt. IIa 139, 349 (1930).
  4. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940), p. 116.
  5. A. Radkowsky, Phys. Rev. 73, 749 (1948).
    [Crossref]
  6. C. C. Klick and J. H. Schulman, J. Opt. Soc. Am. 40, 509 (1950).
    [Crossref]
  7. F. A. Kröger, Physica 7, 1 (1940).
    [Crossref]
  8. R. Frerichs, Naturwiss. 33, 281 (1946).
    [Crossref]
  9. M. E. Wise and H. A. Klasens, J. Opt. Soc. Am. 38, 226 (1948).
    [Crossref] [PubMed]
  10. C. C. Klick and J. H. Schulman, Phys. Rev. 75, 1606 (1949).
    [Crossref]
  11. C. C. Klick, Phys. Rev. 79, 894 (1950).
    [Crossref]
  12. E. Nagy, J. Opt. Soc. Am. 39, 42 (1949).
    [Crossref]
  13. Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
    [Crossref]
  14. E. Burstein and J. J. Oberly, Phys. Rev. 78, 349 (1950).
  15. G. H. Wannier, Phys. Rev. 76, 438 (1949).
    [Crossref]
  16. A. von Hippel, Z. Physik 101, 680 (1936).
    [Crossref]
  17. F. Seitz, Trans. Faraday Soc. 35, 79 (1939).
  18. M. Schön, Ann. d. Physik, Series 6,  3, 343 (1948).
    [Crossref]
  19. G. Szigeti and E. Nagy, Pubs. of the Univ. for Tech. Sciences, Budapest 1, 115 (1948).
  20. F. Seitz, Phys. Rev. 76, 1376 (1949).
    [Crossref]
  21. M. Mell, Z. Physik 16, 244 (1923).
    [Crossref]
  22. S. Rothschild, Trans. Faraday Soc. 42, 635 (1946).
    [Crossref]
  23. F. A. Kröger and J. E. Hellingman, J. Electrochem. Soc. 93, 156 (1948); J. Electrochem. Soc. 95, 68 (1949).
    [Crossref]
  24. F. E. Williams, Phys. Rev. 80, 306 (1950). F. E. Williams, J. Chem. Phys. 19, 457 (1951).
    [Crossref]
  25. F. E. Williams, Phys. Rev. 82, 281 (1951).
    [Crossref]

1951 (1)

F. E. Williams, Phys. Rev. 82, 281 (1951).
[Crossref]

1950 (4)

F. E. Williams, Phys. Rev. 80, 306 (1950). F. E. Williams, J. Chem. Phys. 19, 457 (1951).
[Crossref]

C. C. Klick and J. H. Schulman, J. Opt. Soc. Am. 40, 509 (1950).
[Crossref]

C. C. Klick, Phys. Rev. 79, 894 (1950).
[Crossref]

E. Burstein and J. J. Oberly, Phys. Rev. 78, 349 (1950).

1949 (5)

G. H. Wannier, Phys. Rev. 76, 438 (1949).
[Crossref]

E. Nagy, J. Opt. Soc. Am. 39, 42 (1949).
[Crossref]

Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
[Crossref]

F. Seitz, Phys. Rev. 76, 1376 (1949).
[Crossref]

C. C. Klick and J. H. Schulman, Phys. Rev. 75, 1606 (1949).
[Crossref]

1948 (5)

M. E. Wise and H. A. Klasens, J. Opt. Soc. Am. 38, 226 (1948).
[Crossref] [PubMed]

A. Radkowsky, Phys. Rev. 73, 749 (1948).
[Crossref]

M. Schön, Ann. d. Physik, Series 6,  3, 343 (1948).
[Crossref]

G. Szigeti and E. Nagy, Pubs. of the Univ. for Tech. Sciences, Budapest 1, 115 (1948).

F. A. Kröger and J. E. Hellingman, J. Electrochem. Soc. 93, 156 (1948); J. Electrochem. Soc. 95, 68 (1949).
[Crossref]

1946 (2)

S. Rothschild, Trans. Faraday Soc. 42, 635 (1946).
[Crossref]

R. Frerichs, Naturwiss. 33, 281 (1946).
[Crossref]

1940 (1)

F. A. Kröger, Physica 7, 1 (1940).
[Crossref]

1939 (1)

F. Seitz, Trans. Faraday Soc. 35, 79 (1939).

1938 (1)

J. T. Randall, Nature 142, 113 (1938). J. T. Randall, Proc. Roy. Soc. (London) 170, 272 (1939). J. T. Randall, Trans. Faraday Soc. 35, 2 (1939).
[Crossref]

1936 (1)

A. von Hippel, Z. Physik 101, 680 (1936).
[Crossref]

1932 (1)

R. Peierls, Ann. Physik 13, 905 (1932).
[Crossref]

1929 (1)

F. Urbach, Sitzber. Akad. Wiss. Wien, Math.-naturw Klasse, Abt. IIa 138, 389 (1929); Abt. IIa 139, 349 (1930).

1923 (1)

M. Mell, Z. Physik 16, 244 (1923).
[Crossref]

Burstein, E.

E. Burstein and J. J. Oberly, Phys. Rev. 78, 349 (1950).

Claffy,

Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
[Crossref]

Frerichs, R.

R. Frerichs, Naturwiss. 33, 281 (1946).
[Crossref]

Ginther,

Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
[Crossref]

Gurney, R. W.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940), p. 116.

Hellingman, J. E.

F. A. Kröger and J. E. Hellingman, J. Electrochem. Soc. 93, 156 (1948); J. Electrochem. Soc. 95, 68 (1949).
[Crossref]

Klasens, H. A.

Klick, C. C.

C. C. Klick and J. H. Schulman, J. Opt. Soc. Am. 40, 509 (1950).
[Crossref]

C. C. Klick, Phys. Rev. 79, 894 (1950).
[Crossref]

C. C. Klick and J. H. Schulman, Phys. Rev. 75, 1606 (1949).
[Crossref]

Kröger, F. A.

F. A. Kröger and J. E. Hellingman, J. Electrochem. Soc. 93, 156 (1948); J. Electrochem. Soc. 95, 68 (1949).
[Crossref]

F. A. Kröger, Physica 7, 1 (1940).
[Crossref]

Mell, M.

M. Mell, Z. Physik 16, 244 (1923).
[Crossref]

Mott, N. F.

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940), p. 116.

Nagy, E.

E. Nagy, J. Opt. Soc. Am. 39, 42 (1949).
[Crossref]

G. Szigeti and E. Nagy, Pubs. of the Univ. for Tech. Sciences, Budapest 1, 115 (1948).

Oberly, J. J.

E. Burstein and J. J. Oberly, Phys. Rev. 78, 349 (1950).

Peierls, R.

R. Peierls, Ann. Physik 13, 905 (1932).
[Crossref]

Radkowsky, A.

A. Radkowsky, Phys. Rev. 73, 749 (1948).
[Crossref]

Randall, J. T.

J. T. Randall, Nature 142, 113 (1938). J. T. Randall, Proc. Roy. Soc. (London) 170, 272 (1939). J. T. Randall, Trans. Faraday Soc. 35, 2 (1939).
[Crossref]

Rothschild, S.

S. Rothschild, Trans. Faraday Soc. 42, 635 (1946).
[Crossref]

Schön, M.

M. Schön, Ann. d. Physik, Series 6,  3, 343 (1948).
[Crossref]

Schulman,

Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
[Crossref]

Schulman, J. H.

C. C. Klick and J. H. Schulman, J. Opt. Soc. Am. 40, 509 (1950).
[Crossref]

C. C. Klick and J. H. Schulman, Phys. Rev. 75, 1606 (1949).
[Crossref]

Seitz, F.

F. Seitz, Phys. Rev. 76, 1376 (1949).
[Crossref]

F. Seitz, Trans. Faraday Soc. 35, 79 (1939).

Szigeti, G.

G. Szigeti and E. Nagy, Pubs. of the Univ. for Tech. Sciences, Budapest 1, 115 (1948).

Urbach, F.

F. Urbach, Sitzber. Akad. Wiss. Wien, Math.-naturw Klasse, Abt. IIa 138, 389 (1929); Abt. IIa 139, 349 (1930).

von Hippel, A.

A. von Hippel, Z. Physik 101, 680 (1936).
[Crossref]

Wannier, G. H.

G. H. Wannier, Phys. Rev. 76, 438 (1949).
[Crossref]

Williams, F. E.

F. E. Williams, Phys. Rev. 82, 281 (1951).
[Crossref]

F. E. Williams, Phys. Rev. 80, 306 (1950). F. E. Williams, J. Chem. Phys. 19, 457 (1951).
[Crossref]

Wise, M. E.

Ann. d. Physik (1)

M. Schön, Ann. d. Physik, Series 6,  3, 343 (1948).
[Crossref]

Ann. Physik (1)

R. Peierls, Ann. Physik 13, 905 (1932).
[Crossref]

J. Electrochem. Soc. (2)

Schulman, Ginther, and Claffy, J. Electrochem. Soc. 96, 57 (1949).
[Crossref]

F. A. Kröger and J. E. Hellingman, J. Electrochem. Soc. 93, 156 (1948); J. Electrochem. Soc. 95, 68 (1949).
[Crossref]

J. Opt. Soc. Am. (3)

Nature (1)

J. T. Randall, Nature 142, 113 (1938). J. T. Randall, Proc. Roy. Soc. (London) 170, 272 (1939). J. T. Randall, Trans. Faraday Soc. 35, 2 (1939).
[Crossref]

Naturwiss. (1)

R. Frerichs, Naturwiss. 33, 281 (1946).
[Crossref]

Phys. Rev. (8)

C. C. Klick and J. H. Schulman, Phys. Rev. 75, 1606 (1949).
[Crossref]

C. C. Klick, Phys. Rev. 79, 894 (1950).
[Crossref]

F. Seitz, Phys. Rev. 76, 1376 (1949).
[Crossref]

E. Burstein and J. J. Oberly, Phys. Rev. 78, 349 (1950).

G. H. Wannier, Phys. Rev. 76, 438 (1949).
[Crossref]

A. Radkowsky, Phys. Rev. 73, 749 (1948).
[Crossref]

F. E. Williams, Phys. Rev. 80, 306 (1950). F. E. Williams, J. Chem. Phys. 19, 457 (1951).
[Crossref]

F. E. Williams, Phys. Rev. 82, 281 (1951).
[Crossref]

Physica (1)

F. A. Kröger, Physica 7, 1 (1940).
[Crossref]

Pubs. of the Univ. for Tech. Sciences, Budapest (1)

G. Szigeti and E. Nagy, Pubs. of the Univ. for Tech. Sciences, Budapest 1, 115 (1948).

Sitzber. Akad. Wiss. Wien, Math.-naturw Klasse, Abt. IIa (1)

F. Urbach, Sitzber. Akad. Wiss. Wien, Math.-naturw Klasse, Abt. IIa 138, 389 (1929); Abt. IIa 139, 349 (1930).

Trans. Faraday Soc. (2)

F. Seitz, Trans. Faraday Soc. 35, 79 (1939).

S. Rothschild, Trans. Faraday Soc. 42, 635 (1946).
[Crossref]

Z. Physik (2)

M. Mell, Z. Physik 16, 244 (1923).
[Crossref]

A. von Hippel, Z. Physik 101, 680 (1936).
[Crossref]

Other (1)

N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940), p. 116.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Emission spectrum of single crystal CdS at 77°K and 4°K. The resolution of the radiometer is indicated by a trace of the green mercury line.

Fig. 2
Fig. 2

Semilogarithmic plot of the peak heights in the CdS emission at 4°K against number of the peak from the absorption edge of the CdS.

Fig. 3
Fig. 3

Emission spectrum of single crystal CdS:Ag at 4°K.

Fig. 4
Fig. 4

Emission spectrum of single crystal CdS:Ag at 77°K. The dashed curve represents the emission plotted with the ordinate scale expanded tenfold.

Fig. 5
Fig. 5

Relative film density of II-F film exposed to emission of ZnS with one part per million of copper activator. Curve 1 is for 300°K; curve 2 for 77°K; curve 3 for 4°K.

Fig. 6
Fig. 6

Relative film density of II-F film exposed to emission of ZnS with thirty parts per million of copper activator. Emission spectra are taken at 4°K, 77°K, and 300°K.

Fig. 7
Fig. 7

Relative film density of II-F film exposed to emission of ZnS with 1000 parts per million of copper activator. Curve 1 is for 300°K; curve 2 for 77°K; curve 3 for 4°K.

Fig. 8
Fig. 8

Radiometer response to emission of P-2 phosphor (ZnS:Cu+Ag). Dotted curve is emission at 300°K, solid curve is 4°K. Only a comparison of the two curves is desired and correction to relative energy has not been made since the correction factors are less precise than the radiometer response.

Fig. 9
Fig. 9

Emission spectra of ZnWO4. Curve A is relative energy measured at 300°K. Curves B, C, and D are relative film densities of II-F film exposed to the emission at 300°K, 4°K, and 77°K, respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P = K e - A N ,
Δ E = K ( h ν 0 + k T ) 1 2 ,