Abstract

Print value in aerial photography carried out to meet technical requirements is determined almost entirely by the amount of recoverable information. This can be evaluated by measuring the photographic resolving power. The work reported here applies resolving power methods to the selection and exposure of contact photographic papers for aerial photography. Negatives on Aero Super-XX and Aero Panatomic-X have been used for the investigation. Most of the work was done with a chloride emulsion but some experiments with a bromide emulsion led to similar conclusions.

It was found that with Aero Super-XX the most generally useful single print is made on a low contrast grade of paper, except for restricted brightness ranges of low contrasts. With Aero Panatomic-X, a single high contrast grade should be used. The higher resolution of the finer grained film is partially lost in the printing.

Glossy paper preserves most of the available information on the film. It is adequate, but much inferior to transparencies. Other paper surfaces lead to more or less serious losses.

Effects of inaccurate paper exposure are shown for different contrast grades. Exposure tolerance and resolving power over the useful range of the film indicate the lower contrast grades to be the most useful for the great majority of air negatives on Aero Super-XX.

Great overexposure but only slight underexposure of film may be compensated for in printing. Maximum and minimum usable paper densities are given.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Loyd A. Jones, J. Franklin Inst. 227, 297, 497 (1939).
    [Crossref]
  2. L. A. Jones and C. N. Nelson, J. Opt. Soc. Am. 30, 93 (1940).
    [Crossref]
  3. L. A. Jones and C. N. Nelson, J. Opt. Soc. Am. 32, 558 (1942).
    [Crossref]
  4. P. D. Carman and R. A. F. Carruthers, J. Opt. Soc. Am. 41, 305 (1951).
    [Crossref]
  5. D. E. Macdonald (private communication).
  6. L. E. Howlett, Can. J. Research A24, 1 (1946).
    [Crossref]
  7. L. E. Howlett, Can. J. Research A26, 60 (1948).
    [Crossref]
  8. L. E. Howlett, Can. J. Research A24, 15 (1946).
    [Crossref]
  9. K. M. Baird, Can. J. Research A27, 130 (1949).
    [Crossref]
  10. K. Huse, J. Opt. Soc. Am. 1, 119 (1917).
    [Crossref]
  11. O. Sandvik and G. Silberstein, J. Opt. Soc. Am. and Rev. Sci. Instr. 17, 107 (1928).
    [Crossref]
  12. Mary Johnson, J. Opt. Soc. Am. 41, 748 (1951).
    [Crossref]

1951 (2)

1949 (1)

K. M. Baird, Can. J. Research A27, 130 (1949).
[Crossref]

1948 (1)

L. E. Howlett, Can. J. Research A26, 60 (1948).
[Crossref]

1946 (2)

L. E. Howlett, Can. J. Research A24, 15 (1946).
[Crossref]

L. E. Howlett, Can. J. Research A24, 1 (1946).
[Crossref]

1942 (1)

1940 (1)

1939 (1)

Loyd A. Jones, J. Franklin Inst. 227, 297, 497 (1939).
[Crossref]

1928 (1)

O. Sandvik and G. Silberstein, J. Opt. Soc. Am. and Rev. Sci. Instr. 17, 107 (1928).
[Crossref]

1917 (1)

Baird, K. M.

K. M. Baird, Can. J. Research A27, 130 (1949).
[Crossref]

Carman, P. D.

Carruthers, R. A. F.

Howlett, L. E.

L. E. Howlett, Can. J. Research A26, 60 (1948).
[Crossref]

L. E. Howlett, Can. J. Research A24, 15 (1946).
[Crossref]

L. E. Howlett, Can. J. Research A24, 1 (1946).
[Crossref]

Huse, K.

Johnson, Mary

Jones, L. A.

Jones, Loyd A.

Loyd A. Jones, J. Franklin Inst. 227, 297, 497 (1939).
[Crossref]

Macdonald, D. E.

D. E. Macdonald (private communication).

Nelson, C. N.

Sandvik, O.

O. Sandvik and G. Silberstein, J. Opt. Soc. Am. and Rev. Sci. Instr. 17, 107 (1928).
[Crossref]

Silberstein, G.

O. Sandvik and G. Silberstein, J. Opt. Soc. Am. and Rev. Sci. Instr. 17, 107 (1928).
[Crossref]

Can. J. Research (4)

L. E. Howlett, Can. J. Research A24, 1 (1946).
[Crossref]

L. E. Howlett, Can. J. Research A26, 60 (1948).
[Crossref]

L. E. Howlett, Can. J. Research A24, 15 (1946).
[Crossref]

K. M. Baird, Can. J. Research A27, 130 (1949).
[Crossref]

J. Franklin Inst. (1)

Loyd A. Jones, J. Franklin Inst. 227, 297, 497 (1939).
[Crossref]

J. Opt. Soc. Am. (5)

J. Opt. Soc. Am. and Rev. Sci. Instr. (1)

O. Sandvik and G. Silberstein, J. Opt. Soc. Am. and Rev. Sci. Instr. 17, 107 (1928).
[Crossref]

Other (1)

D. E. Macdonald (private communication).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Standard five-line test object.

Fig. 2
Fig. 2

Print as used in testing paper, with contrast increased for clarity.

Fig. 3
Fig. 3

Method of plotting results and of determining figures of merit.

Fig. 4
Fig. 4

Best results obtainable printing from Aero Super-XX film. Print density is shown as a function of film log exposure.

Fig. 5
Fig. 5

Best results obtainable printing from Aero Panatomic-X film. Print density appears as in Fig. 4.

Fig. 6
Fig. 6

Resolution obtainable in print on “E” paper surface.

Fig. 7
Fig. 7

Loss in resolution due to use of white (tungsten) light instead of argon light. Also shows effect of printing on “N” paper surface.

Fig. 8
Fig. 8

Resolution obtainable on extreme contrast grades, with Aero Super-XX.

Fig. 9
Fig. 9

Resolution obtainable on a transparency.

Fig. 10
Fig. 10

Print resolving power and density as functions of paper exposure time. Permissible exposure limits are shown (see Table III).

Fig. 11
Fig. 11

Resolution obtainable on prints from incorrectly exposed film.

Tables (5)

Tables Icon

Table I Log brightness ranges of nine scenes.a

Tables Icon

Table II Figures of merit for print materials. Test object contrast 1.38. Argon illumination in all cases except where noted.

Tables Icon

Table III Tolerances in exposure time. Expressed as (EmaxEmin/Emax+Emin)×100/%.

Tables Icon

Table IV Extreme maximum and minimum useful densities, No. 1 Glossy paper.

Tables Icon

Table V Maximum and minimum useful densities, other papers (correctly exposed).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Maximum print density - 1.50. Minimum print density - 0.13.