Abstract

This study consists of the quantitative observation of the distribution of harmonic components of scintillation with frequency. Examples of preliminary results at frequencies ranging from 10 to 800 cycles per second are used to exhibit changes in this frequency distribution with visual seeing, zenith distance of the observed object, altitude above sea level, size of circular aperture, and orientation of rectangular aperture. Motion pictures of shadows on a 40-inch mirror caused by atmospheric disturbances which produce scintillation indicate that these shadows have a transitory nature. Motion pictures of Hartmann images demonstrate changes of size, shape, and brightness (scintillation) of stellar images formed as light from the same star passes through four widely-separated apertures in front of the 40-inch mirror. Color scintillation is demonstrated with tracings from a dual-beam oscillograph. Other tracings show that scintillating starlight is not polarized.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Pernter and F. M. Exner, Meteorologische Optik (Braumüller, Vienna and Leipzig, 1922), second edition, pp. 188–241.
  2. André Danjon and André Couder, Lunettes et Télescopes (Editions de la Revue D’Optique Théorique et Instrumentale, Paris, 1935), pp. 72–94.
  3. J. A. Anderson, J. Opt. Soc. Am. 25, 152 (1935).
    [Crossref]
  4. F. Zwicky, Publ. Astron. Soc. Pacific 62, 150 (1950).
    [Crossref]
  5. E. Gaviola, Astron. J. 54, 155 (1949) and Popular Astron. 56, 353 (1948).
    [Crossref]
  6. A. E. Whitford and J. Stebbins, Publ. Am. Astron. Soc. 8, 228 (1936). Sky and Telescope 3, No. 4, 5 (1944).
  7. H. E. Butler, Observatory 70, 235 (1950) and Observatory 71, 28 (1951); Nature 167, 287 (1951).
  8. M. A. Ellison and R. Wilson, Observatory 71, 26 (1951).
  9. M. Minnaert and J. Houtgast, Z. für Astrophys. 10, 86 (1935).
  10. B. Strömgren, Mat. Tids. B 1945, Pt. 1, 15 (1945).
  11. H. Hartridge and R. Weale, Nature 164, 999 (1949).
    [Crossref]
  12. C. C. L. Gregory, Nature 165, 146 (1950).
    [Crossref]
  13. M. Minnaert, Nature 165, 663 (1950).
    [Crossref]
  14. A. H. R. Goldie, Nature 165, 1019 (1950).
    [Crossref]
  15. H. Hartridge, Nature 166, 151 (1950).
    [Crossref]
  16. E. C. S. Megaw, Nature 166, 1100 (1950).
    [Crossref]
  17. F. Schlesinger, Publ. Alleghany Obs. 3, 1 (1916) and Monthly Notices Roy. Astron. Soc. 87, 510 (1927).
  18. E. Goldstein, (1949), and (1950).
  19. R. D. Sard, J. Appl. Phys. 17, 768 (1946).
    [Crossref]
  20. R. W. Engstrom, J. Opt. Soc. Am. 37, 425 (1947).
  21. W. Shockley and J. R. Pierce, Proc. Inst. Radio Engrs. 26, 321 (1938).

1951 (1)

M. A. Ellison and R. Wilson, Observatory 71, 26 (1951).

1950 (7)

F. Zwicky, Publ. Astron. Soc. Pacific 62, 150 (1950).
[Crossref]

H. E. Butler, Observatory 70, 235 (1950) and Observatory 71, 28 (1951); Nature 167, 287 (1951).

C. C. L. Gregory, Nature 165, 146 (1950).
[Crossref]

M. Minnaert, Nature 165, 663 (1950).
[Crossref]

A. H. R. Goldie, Nature 165, 1019 (1950).
[Crossref]

H. Hartridge, Nature 166, 151 (1950).
[Crossref]

E. C. S. Megaw, Nature 166, 1100 (1950).
[Crossref]

1949 (2)

E. Gaviola, Astron. J. 54, 155 (1949) and Popular Astron. 56, 353 (1948).
[Crossref]

H. Hartridge and R. Weale, Nature 164, 999 (1949).
[Crossref]

1947 (1)

R. W. Engstrom, J. Opt. Soc. Am. 37, 425 (1947).

1946 (1)

R. D. Sard, J. Appl. Phys. 17, 768 (1946).
[Crossref]

1945 (1)

B. Strömgren, Mat. Tids. B 1945, Pt. 1, 15 (1945).

1938 (1)

W. Shockley and J. R. Pierce, Proc. Inst. Radio Engrs. 26, 321 (1938).

1936 (1)

A. E. Whitford and J. Stebbins, Publ. Am. Astron. Soc. 8, 228 (1936). Sky and Telescope 3, No. 4, 5 (1944).

1935 (2)

J. A. Anderson, J. Opt. Soc. Am. 25, 152 (1935).
[Crossref]

M. Minnaert and J. Houtgast, Z. für Astrophys. 10, 86 (1935).

1916 (1)

F. Schlesinger, Publ. Alleghany Obs. 3, 1 (1916) and Monthly Notices Roy. Astron. Soc. 87, 510 (1927).

Anderson, J. A.

Butler, H. E.

H. E. Butler, Observatory 70, 235 (1950) and Observatory 71, 28 (1951); Nature 167, 287 (1951).

Couder, André

André Danjon and André Couder, Lunettes et Télescopes (Editions de la Revue D’Optique Théorique et Instrumentale, Paris, 1935), pp. 72–94.

Danjon, André

André Danjon and André Couder, Lunettes et Télescopes (Editions de la Revue D’Optique Théorique et Instrumentale, Paris, 1935), pp. 72–94.

Ellison, M. A.

M. A. Ellison and R. Wilson, Observatory 71, 26 (1951).

Engstrom, R. W.

R. W. Engstrom, J. Opt. Soc. Am. 37, 425 (1947).

Exner, F. M.

J. M. Pernter and F. M. Exner, Meteorologische Optik (Braumüller, Vienna and Leipzig, 1922), second edition, pp. 188–241.

Gaviola, E.

E. Gaviola, Astron. J. 54, 155 (1949) and Popular Astron. 56, 353 (1948).
[Crossref]

Goldie, A. H. R.

A. H. R. Goldie, Nature 165, 1019 (1950).
[Crossref]

Goldstein, E.

E. Goldstein, (1949), and (1950).

Gregory, C. C. L.

C. C. L. Gregory, Nature 165, 146 (1950).
[Crossref]

Hartridge, H.

H. Hartridge, Nature 166, 151 (1950).
[Crossref]

H. Hartridge and R. Weale, Nature 164, 999 (1949).
[Crossref]

Houtgast, J.

M. Minnaert and J. Houtgast, Z. für Astrophys. 10, 86 (1935).

Megaw, E. C. S.

E. C. S. Megaw, Nature 166, 1100 (1950).
[Crossref]

Minnaert, M.

M. Minnaert, Nature 165, 663 (1950).
[Crossref]

M. Minnaert and J. Houtgast, Z. für Astrophys. 10, 86 (1935).

Pernter, J. M.

J. M. Pernter and F. M. Exner, Meteorologische Optik (Braumüller, Vienna and Leipzig, 1922), second edition, pp. 188–241.

Pierce, J. R.

W. Shockley and J. R. Pierce, Proc. Inst. Radio Engrs. 26, 321 (1938).

Sard, R. D.

R. D. Sard, J. Appl. Phys. 17, 768 (1946).
[Crossref]

Schlesinger, F.

F. Schlesinger, Publ. Alleghany Obs. 3, 1 (1916) and Monthly Notices Roy. Astron. Soc. 87, 510 (1927).

Shockley, W.

W. Shockley and J. R. Pierce, Proc. Inst. Radio Engrs. 26, 321 (1938).

Stebbins, J.

A. E. Whitford and J. Stebbins, Publ. Am. Astron. Soc. 8, 228 (1936). Sky and Telescope 3, No. 4, 5 (1944).

Strömgren, B.

B. Strömgren, Mat. Tids. B 1945, Pt. 1, 15 (1945).

Weale, R.

H. Hartridge and R. Weale, Nature 164, 999 (1949).
[Crossref]

Whitford, A. E.

A. E. Whitford and J. Stebbins, Publ. Am. Astron. Soc. 8, 228 (1936). Sky and Telescope 3, No. 4, 5 (1944).

Wilson, R.

M. A. Ellison and R. Wilson, Observatory 71, 26 (1951).

Zwicky, F.

F. Zwicky, Publ. Astron. Soc. Pacific 62, 150 (1950).
[Crossref]

Astron. J. (1)

E. Gaviola, Astron. J. 54, 155 (1949) and Popular Astron. 56, 353 (1948).
[Crossref]

J. Appl. Phys. (1)

R. D. Sard, J. Appl. Phys. 17, 768 (1946).
[Crossref]

J. Opt. Soc. Am. (2)

R. W. Engstrom, J. Opt. Soc. Am. 37, 425 (1947).

J. A. Anderson, J. Opt. Soc. Am. 25, 152 (1935).
[Crossref]

Mat. Tids. B (1)

B. Strömgren, Mat. Tids. B 1945, Pt. 1, 15 (1945).

Nature (6)

H. Hartridge and R. Weale, Nature 164, 999 (1949).
[Crossref]

C. C. L. Gregory, Nature 165, 146 (1950).
[Crossref]

M. Minnaert, Nature 165, 663 (1950).
[Crossref]

A. H. R. Goldie, Nature 165, 1019 (1950).
[Crossref]

H. Hartridge, Nature 166, 151 (1950).
[Crossref]

E. C. S. Megaw, Nature 166, 1100 (1950).
[Crossref]

Observatory (2)

H. E. Butler, Observatory 70, 235 (1950) and Observatory 71, 28 (1951); Nature 167, 287 (1951).

M. A. Ellison and R. Wilson, Observatory 71, 26 (1951).

Proc. Inst. Radio Engrs. (1)

W. Shockley and J. R. Pierce, Proc. Inst. Radio Engrs. 26, 321 (1938).

Publ. Alleghany Obs. (1)

F. Schlesinger, Publ. Alleghany Obs. 3, 1 (1916) and Monthly Notices Roy. Astron. Soc. 87, 510 (1927).

Publ. Am. Astron. Soc. (1)

A. E. Whitford and J. Stebbins, Publ. Am. Astron. Soc. 8, 228 (1936). Sky and Telescope 3, No. 4, 5 (1944).

Publ. Astron. Soc. Pacific (1)

F. Zwicky, Publ. Astron. Soc. Pacific 62, 150 (1950).
[Crossref]

Z. für Astrophys. (1)

M. Minnaert and J. Houtgast, Z. für Astrophys. 10, 86 (1935).

Other (3)

J. M. Pernter and F. M. Exner, Meteorologische Optik (Braumüller, Vienna and Leipzig, 1922), second edition, pp. 188–241.

André Danjon and André Couder, Lunettes et Télescopes (Editions de la Revue D’Optique Théorique et Instrumentale, Paris, 1935), pp. 72–94.

E. Goldstein, (1949), and (1950).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Block diagram of the apparatus used for determining the relation between amount of scintillation and the frequency at which it occurs.

Fig. 2
Fig. 2

The response of the dc amplifier and wave analyzer combined, to equal signals at different frequencies, relative to that at 100 cycles per second. Open circles indicate points determined with the sine-wave standard signal source (A). The remaining symbols represent the response produced when the shot-noise source (B) was used in conjunction with different anode resistors at the output of the 1P21. The capacitance of the cable connecting the 1P21 anode and resistors is 560 μμf.

Fig. 3
Fig. 3

Scintillation spectra observed at Washington under widely different conditions of visual seeing. Both nights were calm. Open circles indicate means of the observational points.

Fig. 4
Fig. 4

Scintillation spectra with good and bad visual seeing at the Lowell Observatory, Flagstaff, Arizona. Surface winds were from north to northeast on both dates, barely perceptible on 11-26-50, but breezy on 12-4-50.

Fig. 5
Fig. 5

Scintillation spectra, showing the increase of scintillation with zenith distance.

Fig. 6
Fig. 6

Scintillation spectra at the Lowell Observatory, Flagstaff, Arizona (elevation 2200 meters) and at Snow-Bowl (elevation 2750 meters). Open points represent means.

Fig. 7
Fig. 7

Variation of scintillation spectra with aperture of telescope. Open points represent means of the observed data.

Fig. 8
Fig. 8

Diagram showing the variation of the amplitude of scintillation with position angle of a one-inch slit over the 15-inch telescope objective. The star was south, 20° from the zenith. The position angle parallel with the horizon is 90°.

Fig. 9
Fig. 9

Section of the record of average brightness level for the observations of Fig. 8. The labels in degrees are of the position angles of the objective slit during the indicated period of observation. One division of the horizontal scale is traversed in 40s.

Fig. 10
Fig. 10

Shadow-band sequences, printed as bas-relief to show flux contours. Successive frames from motion pictures of a 40-inch telescope mirror when illuminated by the objects indicated. The zenith distance of Sirius was 56° on March 25 and 62° on March 31. Exposure times are 1/75, 1/50, and 1/25 seconds for taking speeds of 24, 16, and 8 frames per second, respectively. Multiple systems of shadows can be distinguished in some of the frames. The different vectors in the wind diagrams show projected directions of the wind relative to the position of the mirror. The velocities are indicated for various heights which are marked on each vector; the intervals between the arcs indicate steps of 10 feet per second.

Fig. 11
Fig. 11

Motion pictures of Hartmann images. An example of change of place, change of focus and scintillation shown by images of Sirius formed by four three-inch apertures in front of the 40-inch mirror. The two negative patterns between the rows are images of Arcturus formed by the same apertures in good seeing conditions.

Fig. 12
Fig. 12

Simultaneous observations of scintillation with a split-beam photometer. In order to illustrate the range of deflections the upper trace shows the effect of moving the star image into the focal plane diaphragm with the telescope slow-motion. C-3384 designates a yellow glass filter and the notations 4955A and 4120A represent the centers of pass-bands of two interference filters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( Total noise ) 2 = ( Scintillation noise ) 2 + ( Shot noise ) 2 .