Abstract

A method of balancing the optical aberrations over a wide angular field of a Schmidt optical system is described. This design method is demonstrated for a Schmidt optical system of focal ratio F:0.7 and covering an angular field of 40°. The reduction in off-axis secondary aberrations is obtained by computing a “wide angle” aspheric corrector plate through the use of “Lucy’s Approximate Method” instead of using the conventional “exact equations.”

© 1950 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Stroemgren, Vierteljahres. d. Astronom. Ges. 70, 65 (1935).
  2. F. A. Lucy, J. Opt. Soc. Am. 30, 251 (1940).
    [Crossref]
  3. F. B. Wright, Pub. A. S. P. 47, 300 (1935).
    [Crossref]
  4. E. M. Linfoot and E. Wolf, J. Opt. Soc. Am. 39, 752 (1949).
    [Crossref]
  5. E. M. Linfoot, M. N. R. A. S. 109, 280 (1949).

1949 (2)

E. M. Linfoot and E. Wolf, J. Opt. Soc. Am. 39, 752 (1949).
[Crossref]

E. M. Linfoot, M. N. R. A. S. 109, 280 (1949).

1940 (1)

1935 (2)

F. B. Wright, Pub. A. S. P. 47, 300 (1935).
[Crossref]

V. B. Stroemgren, Vierteljahres. d. Astronom. Ges. 70, 65 (1935).

Linfoot, E. M.

E. M. Linfoot, M. N. R. A. S. 109, 280 (1949).

E. M. Linfoot and E. Wolf, J. Opt. Soc. Am. 39, 752 (1949).
[Crossref]

Lucy, F. A.

Stroemgren, V. B.

V. B. Stroemgren, Vierteljahres. d. Astronom. Ges. 70, 65 (1935).

Wolf, E.

Wright, F. B.

F. B. Wright, Pub. A. S. P. 47, 300 (1935).
[Crossref]

J. Opt. Soc. Am. (2)

M. N. R. A. S. (1)

E. M. Linfoot, M. N. R. A. S. 109, 280 (1949).

Pub. A. S. P. (1)

F. B. Wright, Pub. A. S. P. 47, 300 (1935).
[Crossref]

Vierteljahres. d. Astronom. Ges. (1)

V. B. Stroemgren, Vierteljahres. d. Astronom. Ges. 70, 65 (1935).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spherical mirror with aperture at center of curvature.

Fig. 2
Fig. 2

Circle of confusion as a function of focal ratio for a spherical mirror with the aperture at the center of curvature.

Fig. 3
Fig. 3

Classical Schmidt optical system.

Fig. 4
Fig. 4

“Exact” equations for computing a Schmidt corrector plate.

Fig. 5
Fig. 5

Size of the circle of confusion as function of field angle for a Schmidt optical system F:0.7 with a corrector plate computed by “exact” methods.

Fig. 6
Fig. 6

Comparison of “exact equation” and “vide angle” corrector plate contours.

Fig. 7
Fig. 7

Comparison of circle of confusion as a function of field angle for “wide angle” and “exact equation” corrector plates.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ = B h 3 - 3 F h 2 β + ( 2 C + D ) h β 2 - E β 3 .
x = a h 2 - β h 4 + γ h 6 -
x = α 1 h 2 - β 1 h 4 .