Abstract

A brief history of the major advances in microscope optical designs precedes a description of problems facing the designer and the manufacturer. Recent developments to expand the usefulness of the microscope and to make its effectiveness more nearly approach theory are discussed. Attention is given to the various forms the instrument takes when applied to special fields.

© 1950 Optical Society of America

Full Article  |  PDF Article

Corrections

L. V. Foster, "Errata*: Microscope Optics," J. Opt. Soc. Am. 40, 883_2-883 (1950)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-40-12-883_2

References

  • View by:
  • |
  • |
  • |

  1. F. D. Cruickshank, Proc. Phys. Soc. 57, 350, 362, 419, 426, 430 (1945).
    [Crossref]
  2. L. I. Epstein, J. Opt. Soc. Am. 39, 847 (1949).
    [Crossref]
  3. G. Wooters, J. Opt. Soc. Am. 39, 1059A (1949).
  4. H. Boegehold, Zeits. f. wiss. Mikroskop. 55, 17 (1938).
  5. A. Koehler, Zeits. f. wiss. Mikroskop,  21, 129 (1904).
  6. L. V. Foster and E. M. Thiel, J. Opt. Soc. Am. 38, 689 (1948).
    [Crossref] [PubMed]
  7. B. K. Johnson, J. Sci. Inst, and Phy. Ind.,  26, 193 (1949).
    [Crossref]
  8. E. M. Brumberg, Bull. Acad. Sci. U.R.S.S. 6, 32 (1942).
  9. C. R. Burch, Proc. Phys. Soc. (London) 59, 41 (1947).
    [Crossref]
  10. D. S. Grey and P. H. Lee, J. Opt. Soc. Am. 39, 719 (1949).
    [Crossref] [PubMed]
  11. D. S. Grey, J. Opt. Soc. Am. 39, 723 (1949).
    [Crossref] [PubMed]
  12. L. V. Foster, Anal. Chem. 21, 432 (1949).
    [Crossref]
  13. F. Zernike, Physica 9, 686, 974 (1942).
    [Crossref]
  14. Chart Compiled by American Optical Company.
  15. J. R. Benford, Trans. Am. Soc. Metals 36, 452 (1946).
  16. L. V. Foster, J. Opt. Soc. Am. 28, 124 (1938).
    [Crossref]
  17. Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
    [Crossref]
  18. V. P. Linnik, Comptes rendus U.R.S.S. (No. 1)21 (1933).

1949 (6)

L. I. Epstein, J. Opt. Soc. Am. 39, 847 (1949).
[Crossref]

G. Wooters, J. Opt. Soc. Am. 39, 1059A (1949).

B. K. Johnson, J. Sci. Inst, and Phy. Ind.,  26, 193 (1949).
[Crossref]

D. S. Grey and P. H. Lee, J. Opt. Soc. Am. 39, 719 (1949).
[Crossref] [PubMed]

D. S. Grey, J. Opt. Soc. Am. 39, 723 (1949).
[Crossref] [PubMed]

L. V. Foster, Anal. Chem. 21, 432 (1949).
[Crossref]

1948 (1)

1947 (1)

C. R. Burch, Proc. Phys. Soc. (London) 59, 41 (1947).
[Crossref]

1946 (1)

J. R. Benford, Trans. Am. Soc. Metals 36, 452 (1946).

1945 (2)

Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
[Crossref]

F. D. Cruickshank, Proc. Phys. Soc. 57, 350, 362, 419, 426, 430 (1945).
[Crossref]

1942 (2)

E. M. Brumberg, Bull. Acad. Sci. U.R.S.S. 6, 32 (1942).

F. Zernike, Physica 9, 686, 974 (1942).
[Crossref]

1938 (2)

L. V. Foster, J. Opt. Soc. Am. 28, 124 (1938).
[Crossref]

H. Boegehold, Zeits. f. wiss. Mikroskop. 55, 17 (1938).

1933 (1)

V. P. Linnik, Comptes rendus U.R.S.S. (No. 1)21 (1933).

1904 (1)

A. Koehler, Zeits. f. wiss. Mikroskop,  21, 129 (1904).

Benford,

Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
[Crossref]

Benford, J. R.

J. R. Benford, Trans. Am. Soc. Metals 36, 452 (1946).

Boegehold, H.

H. Boegehold, Zeits. f. wiss. Mikroskop. 55, 17 (1938).

Brumberg, E. M.

E. M. Brumberg, Bull. Acad. Sci. U.R.S.S. 6, 32 (1942).

Burch, C. R.

C. R. Burch, Proc. Phys. Soc. (London) 59, 41 (1947).
[Crossref]

Cruickshank, F. D.

F. D. Cruickshank, Proc. Phys. Soc. 57, 350, 362, 419, 426, 430 (1945).
[Crossref]

Epstein, L. I.

Foster, L. V.

Grey, D. S.

Johnson, B. K.

B. K. Johnson, J. Sci. Inst, and Phy. Ind.,  26, 193 (1949).
[Crossref]

Koehler, A.

A. Koehler, Zeits. f. wiss. Mikroskop,  21, 129 (1904).

Lee, P. H.

Linnik, V. P.

V. P. Linnik, Comptes rendus U.R.S.S. (No. 1)21 (1933).

McLean,

Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
[Crossref]

Thiel, E. M.

Turner,

Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
[Crossref]

Wooters, G.

G. Wooters, J. Opt. Soc. Am. 39, 1059A (1949).

Zernike, F.

F. Zernike, Physica 9, 686, 974 (1942).
[Crossref]

Anal. Chem. (1)

L. V. Foster, Anal. Chem. 21, 432 (1949).
[Crossref]

Bull. Acad. Sci. U.R.S.S. (1)

E. M. Brumberg, Bull. Acad. Sci. U.R.S.S. 6, 32 (1942).

Comptes rendus U.R.S.S. (No. 1) (1)

V. P. Linnik, Comptes rendus U.R.S.S. (No. 1)21 (1933).

Econ. Geol. (1)

Turner, Benford, and McLean, Econ. Geol. 40, 18 (1945).
[Crossref]

J. Opt. Soc. Am. (6)

J. Sci. Inst, and Phy. Ind. (1)

B. K. Johnson, J. Sci. Inst, and Phy. Ind.,  26, 193 (1949).
[Crossref]

Physica (1)

F. Zernike, Physica 9, 686, 974 (1942).
[Crossref]

Proc. Phys. Soc. (1)

F. D. Cruickshank, Proc. Phys. Soc. 57, 350, 362, 419, 426, 430 (1945).
[Crossref]

Proc. Phys. Soc. (London) (1)

C. R. Burch, Proc. Phys. Soc. (London) 59, 41 (1947).
[Crossref]

Trans. Am. Soc. Metals (1)

J. R. Benford, Trans. Am. Soc. Metals 36, 452 (1946).

Zeits. f. wiss. Mikroskop (1)

A. Koehler, Zeits. f. wiss. Mikroskop,  21, 129 (1904).

Zeits. f. wiss. Mikroskop. (1)

H. Boegehold, Zeits. f. wiss. Mikroskop. 55, 17 (1938).

Other (1)

Chart Compiled by American Optical Company.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Cross-sectional view of Bausch & Lomb 4 mm, 0.65 N.A. objective shows two achromats and one hemisphere, each mounted in a cell which slides in a sleeve.

Fig. 2
Fig. 2

Optical construction of Bausch & Lomb 16 mm achromat on left, and Bausch & Lomb 16 mm apochromat on right. Curves show axial chromatic aberration.

Fig. 3
Fig. 3

Photomicrographs of pleurosigma angulatum and appearance of back aperture of objectives. (a) 4 mm, 0.85 N.A. objective with central illumination, (b) with oblique illumination, and (c) 4 mm, 0.65 N.A. objective with oblique illumination; clear areas represent aperture and position of illumination pencil; shaded areas represent position of diffraction pencils passing through the objective.

Fig. 4
Fig. 4

Optical construction and chromatic aberration curves of (a) 4 mm, 0.85 N.A. achromat, (b) 4 mm, 0.85 N.A. semi-apochromat, and (c) 4 mm, 0.95 N.A. apochromat.

Fig. 5
Fig. 5

Optical construction and chromatic aberration curves of (a) 1.8 mm, 1.25 N.A. achromat, and (b) 2 mm, 1.40 N.A. apochromat. Both are oil immersion objectives.

Fig. 6
Fig. 6

Light incident on a specularly reflecting object follows the laws of reflection and, if no collective is near the object, the edge of the field will lack brightness. At the edge of the field the N.A. of the reflected beam received by the objective is 0.06 for the single achromat, but 0.09 for the two achromatic objectives.

Fig. 7
Fig. 7

A 28 mm, 3.2× objective parfocal with conventional high power microscope objectives.

Fig. 8
Fig. 8

Photomicrographs of pleurosigma angulatum and the appearance of the back aperture of the objective. The objective was the Polaroid-Grey 2.8 mm, 0.72 N.A. reflecting objective. (a) Photograph made in visual green, (b) photograph made in ultraviolet.

Fig. 9
Fig. 9

Photomicrographs of tear in magnesium fluoride film on glass made with a 1.8 mm, 1.25 N.A. objective. (a) Regular brightfield illumination, (b) bright phase contrast, and (c) dark phase contrast, and (d) darkfield illumination.

Fig. 10
Fig. 10

Chromatic difference of magnification of achromatic and apochromatic objectives.

Fig. 11
Fig. 11

Photomicrograph of diamond scratch on glass. By following interference bands across the scratch, an estimate of its depth can be made.