Abstract

The optical characteristics of colored dye-forming couplers of a type suitable for use in color films, such as Kodacolor or Ansco Color, are described. Destruction of the color of the coupler by the image dye-forming reactions of color development leads to a negative image composed of the color-developed dye and a positive image composed of unused coupler. It is shown that the effect on color reproduction of the overlapping absorptions of the image dyes available for use in color negative films can be eliminated by the use of colored couplers which have the proper spectral-absorption characteristics. The role of the six masks which are found to be required by a number of the theoretical treatments of the problem of exact color reproduction can be filled by colored couplers having the proper spectral-absorption characteristics. The effect of colored couplers on film speed is also discussed.

© 1950 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Albert, German Patent101,379 (1899); German Patent116,538 (1900).
  2. W. T. Hanson and P. W. Vittum, J. Phot. Soc. Am. 13, 94 (1947).
  3. Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).
  4. W. R. Brode, Chemical Spectroscopy (John Wiley and Sons, Inc., New York, 1943), second edition.
  5. Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).
  6. J. A. C. Yule, J. Opt. Soc. Am. 28, 419 (1938).
    [Crossref]
  7. D. L. MacAdam, J. Opt. Soc. Am. 28, 466 (1938).
    [Crossref]
  8. A. Marriage, Phot. J. 88B, 75 (1948).
  9. Brewer, Hanson, and Horton, J. Opt. Soc. Am. 39, 924 (1949).
    [Crossref]

1949 (1)

1948 (1)

A. Marriage, Phot. J. 88B, 75 (1948).

1947 (1)

W. T. Hanson and P. W. Vittum, J. Phot. Soc. Am. 13, 94 (1947).

1938 (2)

1924 (1)

Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).

Albert, E.

E. Albert, German Patent101,379 (1899); German Patent116,538 (1900).

Brewer,

Brode, W. R.

W. R. Brode, Chemical Spectroscopy (John Wiley and Sons, Inc., New York, 1943), second edition.

Dassler,

Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).

Hanson,

Hanson, W. T.

W. T. Hanson and P. W. Vittum, J. Phot. Soc. Am. 13, 94 (1947).

Herdle,

Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).

Horton,

MacAdam, D. L.

Marriage, A.

A. Marriage, Phot. J. 88B, 75 (1948).

Sawdey,

Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).

Scholl,

Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).

Thiel,

Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).

Vittum,

Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).

Vittum, P. W.

W. T. Hanson and P. W. Vittum, J. Phot. Soc. Am. 13, 94 (1947).

Wulfken,

Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).

Yule, J. A. C.

Fortschr. Chem., Physik u. physik. Chemie (1)

Thiel, Dassler, and Wulfken, Fortschr. Chem., Physik u. physik. Chemie 18, 1–120 (1924).

J. Opt. Soc. Am. (3)

J. Phot. Soc. Am. (1)

W. T. Hanson and P. W. Vittum, J. Phot. Soc. Am. 13, 94 (1947).

Phot. J. (1)

A. Marriage, Phot. J. 88B, 75 (1948).

Other (3)

Vittum, Sawdey, Herdle, and Scholl, J. Am. Chem. Soc. (to be published).

W. R. Brode, Chemical Spectroscopy (John Wiley and Sons, Inc., New York, 1943), second edition.

E. Albert, German Patent101,379 (1899); German Patent116,538 (1900).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Spectral-density curves for (a) coupler, (b) magenta dye formed from this coupler. Additional curve shows presence of one-half the coupler and one-half the dye.

Fig. 2
Fig. 2

Assumed H and D curves for dye image shown in Fig. 1: (a) D560–logE, assumed to be linear; (b) D440–logE.

Fig. 3
Fig. 3

Spectral-density curves for (a) coupler with lower extinction coefficient than that shown in Fig. 1; (b) magenta dye formed from this coupler.

Fig. 4
Fig. 4

Assumed H and D curves for dye image shown in Fig. 3: (a) D560–logE, assumed to be linear; (b) D440–logE.

Fig. 5
Fig. 5

Spectral-density curves for (a) coupler, and (b) magenta dye formed from a mixture of this coupler with an uncolored coupler. Additional curves show intermediate degrees of dye-forming reaction in which the colored coupler reacts predominantly in the lower density regions.

Fig. 6
Fig. 6

Assumed H and D curves for dye image shown in Fig. 5: (a) D560–logE assumed to be linear; (b) D440–logE.

Fig. 7
Fig. 7

Spectral-density curves for (a) coupler, and (b) magenta dye formed from this coupler.

Fig. 8
Fig. 8

Spectral-density curves for (a) coupler, and (b) cyan dye formed from this coupler.

Fig. 9
Fig. 9

Assumed H and D curves for dye image shown in Fig. 8: (a) D680–logE assumed to be linear; (b) D440–logE; (c) D560–logE.

Fig. 10
Fig. 10

Spectral-density curves for (a) coupler, and (b) magenta dye formed from this coupler. This pair fulfills the requirements described by Eqs. (6).

Fig. 11
Fig. 11

Spectral-density curves for (a) coupler, and (b) cyan dye formed from this coupler. This pair fulfills the requirements described by Eqs. (6).

Fig. 12
Fig. 12

Spectral-density curves for (a) coupler, and (b) yellow dye formed from this coupler. This pair fulfills the requirements described by Eqs. (6).

Tables (1)

Tables Icon

Table I Numerical values of component image gammas.*

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

c = γ c r D r + γ c g D g + γ c b D b + K c ; m = γ m r D r + γ m g D g + γ m b D b + K m ; y = γ y r D r + γ y g D g + γ y b D b + K y ;
c = γ c D r + K c , m = γ m D g + K m , y = γ y D b + K y .
c = γ c p D r n + K c p , m = γ m p D g n + K m p , y = γ y p D b n + K y p ,
D r n = D r γ c r n + D g γ m r n + D b γ y r n . D g n = D r γ c g n + D g γ m g n + D b γ y g n . D b n = D r γ c b n + D g γ m b n + D b γ y b n .
c = γ c p ( D r γ c r n + D g γ m r n + D b γ y r n ) + K c p . m = γ m p ( D r γ c g n + D b γ m g n + D g γ y g n ) + K m p . y = γ y p ( D r γ c b n + D g γ m b n + D b γ y b n ) + K y p .
γ c r n = γ c r γ c p , γ c g n = γ m r γ m p , γ c b n = γ y r γ y p , K c p = K c . γ m r n = γ c g γ c p , γ m g n = γ m g γ m p , γ m b n = γ y g γ y p , K m p = K m . γ y r n = γ c b γ c p γ y g n = γ m b γ m p , γ y b n = γ y b γ y p , K y p = K y .
γ c r n = 0.923 , γ c g n = - 0.326 , γ c b n = - 0.258 , γ m r n = - 0.447 , γ m g n = 1.077 , γ m b n = - 0.143 , γ y r n = 0.024 , γ y g n = - 0.251 , γ y b n = 0.901.