Abstract

To effect the precise examination of the interference colors of thin layers, the author calculated them in cases of non-reflecting layers and Newton’s rings, and plotted the results on the I. C. I. graph. The significance of several results indicated by the graphs is discussed.

© 1950 Optical Society of America

Full Article  |  PDF Article

Corrections

Kubota Hiroshi, "Errata*: On the Interference Color of Thin Layers on Glass Surface," J. Opt. Soc. Am. 40, 883_4-883 (1950)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-40-12-883_4

References

  • View by:
  • |
  • |
  • |

  1. I. Newton, Optics (G. Bell and SonsLondon, 1931), p. 208.
  2. Rayleigh, Scientific Papers (University Press, Cambridge, 1886) Vol. II, p. 498.
  3. D. MacAdam, J. Opt. Soc. Am. 27, 294 (1937).
    [CrossRef]

1937 (1)

MacAdam, D.

Newton, I.

I. Newton, Optics (G. Bell and SonsLondon, 1931), p. 208.

Rayleigh,

Rayleigh, Scientific Papers (University Press, Cambridge, 1886) Vol. II, p. 498.

J. Opt. Soc. Am. (1)

Other (2)

I. Newton, Optics (G. Bell and SonsLondon, 1931), p. 208.

Rayleigh, Scientific Papers (University Press, Cambridge, 1886) Vol. II, p. 498.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Interference color in I. C. I. diagram.

Fig. 2
Fig. 2

Newton’s ring.

Fig. 3
Fig. 3

Change of interference color with n.

Fig. 4
Fig. 4

Change of color with n.

Fig. 5
Fig. 5

Interference color in MacAdam’s U. C. S. diagram.

Fig. 6
Fig. 6

Change of color sensitivity with nd.

Fig. 7
Fig. 7

Interference color with yellow light.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

X = E · x ¯ · R d λ , Y = E · y ¯ · R d λ , Z = E · z ¯ · R d λ .
x = X / S , y = Y / S , z = Z / S , where S = X + Y + Z .
R = B 2 + C 2 + 2 B C cos δ 1 + B 2 + C 2 + 2 B C cos δ ,
n = 1 ,             C = - B             and             R = 4 B 2 sin 2 ( δ / 2 ) .
R = 4 B C [ + cos 2 ( δ / 2 ) ] ,
= ( B - C ) 2 4 B C = ( n 2 - n g ) 2 ( n 2 - 1 ) ( n 2 g - n 2 ) .
{ X = E · x ¯ d λ + E · x ¯ · cos 2 ( δ / 2 ) d λ = a + X Y = E · y ¯ d λ + E · y ¯ · cos 2 ( δ / 2 ) d λ = b + Y Z = E · z ¯ d λ + E · z ¯ · cos 2 ( δ / 2 ) d λ = c + Z ,
x = a + X k + S ,             y = b + Y k + S ,             z = c + Z k + S ,