Abstract

A spiral mercury arc light source of the low pressure variety and 2-kilowatt power dissipation is described. The use of this powerful but geometrically undesirable arrangement for making depolarization measurements is investigated. Calculations of convergence errors using the polarized incident light method of Edsall and Wilson indicate a linear convergence correction of measured ρ-values. Measurement of depolarization values of Raman lines whose ρ-value is accurately known confirms the theoretical calculation of convergence correction. From the results moderately accurate ρ-values can be obtained by this method by using an empirical correction curve.

© 1950 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Douglas and D. H. Rank, J. Opt. Soc. Am. 38, 281 (1948).
    [Crossref] [PubMed]
  2. D. H. Rank and J. S. McCartney, J. Opt. Soc. Am. 38, 279 (1948).
    [Crossref] [PubMed]
  3. A. C. Menzies and J. Skinner, J. Sci. Inst. 26, 299 (1949).
    [Crossref]
  4. J. T. Edsall and E. B. Wilson, J. Chem. Phys. 6, 124 (1938).
    [Crossref]
  5. B. L. Crawford and W. Horowitz, J. Chem. Phys. 15, 268 (1947).
    [Crossref]
  6. D. H. Rank and R. Wiegand, J. Opt. Soc. Am. 36, 325 (1946).
    [Crossref] [PubMed]
  7. G. Placzek and Marx, Handbuch der Radiologie (Akademische Verlagsgesellshaft, Leipzig, 1934) Vol. VI, Part II, p. 205.

1949 (1)

A. C. Menzies and J. Skinner, J. Sci. Inst. 26, 299 (1949).
[Crossref]

1948 (2)

1947 (1)

B. L. Crawford and W. Horowitz, J. Chem. Phys. 15, 268 (1947).
[Crossref]

1946 (1)

1938 (1)

J. T. Edsall and E. B. Wilson, J. Chem. Phys. 6, 124 (1938).
[Crossref]

Crawford, B. L.

B. L. Crawford and W. Horowitz, J. Chem. Phys. 15, 268 (1947).
[Crossref]

Douglas, A. E.

Edsall, J. T.

J. T. Edsall and E. B. Wilson, J. Chem. Phys. 6, 124 (1938).
[Crossref]

Horowitz, W.

B. L. Crawford and W. Horowitz, J. Chem. Phys. 15, 268 (1947).
[Crossref]

Marx,

G. Placzek and Marx, Handbuch der Radiologie (Akademische Verlagsgesellshaft, Leipzig, 1934) Vol. VI, Part II, p. 205.

McCartney, J. S.

Menzies, A. C.

A. C. Menzies and J. Skinner, J. Sci. Inst. 26, 299 (1949).
[Crossref]

Placzek, G.

G. Placzek and Marx, Handbuch der Radiologie (Akademische Verlagsgesellshaft, Leipzig, 1934) Vol. VI, Part II, p. 205.

Rank, D. H.

Skinner, J.

A. C. Menzies and J. Skinner, J. Sci. Inst. 26, 299 (1949).
[Crossref]

Wiegand, R.

Wilson, E. B.

J. T. Edsall and E. B. Wilson, J. Chem. Phys. 6, 124 (1938).
[Crossref]

J. Chem. Phys. (2)

J. T. Edsall and E. B. Wilson, J. Chem. Phys. 6, 124 (1938).
[Crossref]

B. L. Crawford and W. Horowitz, J. Chem. Phys. 15, 268 (1947).
[Crossref]

J. Opt. Soc. Am. (3)

J. Sci. Inst. (1)

A. C. Menzies and J. Skinner, J. Sci. Inst. 26, 299 (1949).
[Crossref]

Other (1)

G. Placzek and Marx, Handbuch der Radiologie (Akademische Verlagsgesellshaft, Leipzig, 1934) Vol. VI, Part II, p. 205.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scaled drawing of light source, scattering tube, filter and cooling arrangement.

Fig. 2
Fig. 2

Reproduction of record made with the photoelectric spectrograph of the Raman spectrum of benzene excited by means of the λ4358 group of mercury lines. Lines marked with an X are excited by λ4047 because of insufficient thickness of NaNO2 filter. Slit width 12 cm−1.

Fig. 3
Fig. 3

Reproduction of records made with the photoelectric spectrograph of the strong lines of the Raman spectrum of CCl4. The upper record was made with parallel polarized exciting light, the lower record with perpendicularly polarized exciting light.

Fig. 4
Fig. 4

A plot of the depolarization factors actually observed (ρ0) for a number of Raman lines against the true value ρt. The curve shown in the figure is a least squares solution of the data.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = 6 γ V V 2 k I 0 ,
I = ( 5 A V V 2 + 7 γ V V 2 ) k I 0 ,
γ 2 = 1 2 [ ( C 1 - C 2 ) 2 + ( C 2 - C 3 ) 2 + ( C 3 - C 1 ) 2 ]
A 2 = ( C 1 + C 2 + C 3 ) 2 ,
ρ t = I I = 6 γ V V 2 ( 5 A V V 2 + 7 γ V V 2 ) .
ρ 0 = I obs . I obs . = 6 γ V V 2 cos Θ + ( 5 A V V 2 + 7 γ V V 2 ) sin Θ 5 A V V 2 + 7 γ V V 2 ,
6 γ V V 2 = ρ t ( 5 A V V 2 + 7 γ V V 2 ) ρ 0 = ρ t cos Θ + sin Θ .