Abstract

The aim of this paper is to show that the so-called visual space has a uniquely determined non-Euclidean metric, or psychometric distance function, the numerical parameters of which depend on the individual observer. Certain well-known phenomena of space perception, such as the horopter, the alley experiment and size constancy, are explained on the basis of the distance function. Methods of measuring the personal parameters of the metric are developed, and applications of the theory to the field of binocular instruments and pictorial representation of space are suggested.

PDF Article

References

  • View by:
  • |
  • |

  1. H. V. Helmholtz, Treatise on Psychological Optics, J. P. C. Southall, Editor (Optical Society of America, 1925), Vol. 3, pp. 482 f.
  2. F. Hillebrand, Denkschr. Akad. Wiss. Wien, math.-nat. Kl. 72, 255 (1902).
  3. W. Blumenfeld, Zeits. f. Physiol. d. Sinnesorgane 65, 241 (1913).
  4. R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton University Press, Princeton, 1947); Metric Methods in Binocular Visual Perception, Studies and Essays, Courant Anniversary Volume (Interscience Publishers, Inc., New York, 1948).

Blumenfeld, W.

W. Blumenfeld, Zeits. f. Physiol. d. Sinnesorgane 65, 241 (1913).

Helmholtz, H. V.

H. V. Helmholtz, Treatise on Psychological Optics, J. P. C. Southall, Editor (Optical Society of America, 1925), Vol. 3, pp. 482 f.

Hillebrand, F.

F. Hillebrand, Denkschr. Akad. Wiss. Wien, math.-nat. Kl. 72, 255 (1902).

Luneburg, R. K.

R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton University Press, Princeton, 1947); Metric Methods in Binocular Visual Perception, Studies and Essays, Courant Anniversary Volume (Interscience Publishers, Inc., New York, 1948).

Other (4)

H. V. Helmholtz, Treatise on Psychological Optics, J. P. C. Southall, Editor (Optical Society of America, 1925), Vol. 3, pp. 482 f.

F. Hillebrand, Denkschr. Akad. Wiss. Wien, math.-nat. Kl. 72, 255 (1902).

W. Blumenfeld, Zeits. f. Physiol. d. Sinnesorgane 65, 241 (1913).

R. K. Luneburg, Mathematical Analysis of Binocular Vision (Princeton University Press, Princeton, 1947); Metric Methods in Binocular Visual Perception, Studies and Essays, Courant Anniversary Volume (Interscience Publishers, Inc., New York, 1948).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.