Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Journ. Camera Club, April, 1889,and Journ. Camera ClubApril, 1893.
  2. Journ. Soc. Chem. Ind., May, 1890.
  3. Journ. Camera Club, April, 1893.
  4. Photographic Journ., June, 1906.
  5. Instruments in which such exposures are made are called “Sensitometers.” For a description, see paper by L. A. Jones, “A New Non-Intermittent Sensitometer.” J. Frank. Inst., 1920, p. 303.
    [CrossRef]
  6. J. Camera Club, July, 1893, p. 166.
  7. “ Ueber das Schwarzungsgesetz photographischen Platten ” Eder’s Jahrbuch, 1914, p. 6.

1920 (1)

Instruments in which such exposures are made are called “Sensitometers.” For a description, see paper by L. A. Jones, “A New Non-Intermittent Sensitometer.” J. Frank. Inst., 1920, p. 303.
[CrossRef]

1906 (1)

Photographic Journ., June, 1906.

1893 (2)

Journ. Camera Club, April, 1893.

J. Camera Club, July, 1893, p. 166.

1890 (1)

Journ. Soc. Chem. Ind., May, 1890.

1889 (1)

Journ. Camera Club, April, 1889,and Journ. Camera ClubApril, 1893.

Jones, L. A.

Instruments in which such exposures are made are called “Sensitometers.” For a description, see paper by L. A. Jones, “A New Non-Intermittent Sensitometer.” J. Frank. Inst., 1920, p. 303.
[CrossRef]

J. Camera Club (1)

J. Camera Club, July, 1893, p. 166.

J. Frank. Inst. (1)

Instruments in which such exposures are made are called “Sensitometers.” For a description, see paper by L. A. Jones, “A New Non-Intermittent Sensitometer.” J. Frank. Inst., 1920, p. 303.
[CrossRef]

Journ. Camera Club (2)

Journ. Camera Club, April, 1889,and Journ. Camera ClubApril, 1893.

Journ. Camera Club, April, 1893.

Journ. Soc. Chem. Ind. (1)

Journ. Soc. Chem. Ind., May, 1890.

Photographic Journ. (1)

Photographic Journ., June, 1906.

Other (1)

“ Ueber das Schwarzungsgesetz photographischen Platten ” Eder’s Jahrbuch, 1914, p. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

F. 1
F. 1

Comparison of observed characteristic curves with Abney’s formula.

F. 2
F. 2

Comparison of observed characteristic curves with Elder’s formula.

F. 3
F. 3

Comparison of observed characteristic curves with Hurter and Driffield’s formula.

F. 4
F. 4

Characteristic curves from new formula.

F. 5
F. 5

Slope curves from new formula.

F. 6
F. 6

Variation of Gamma with n.

F. 7
F. 7

Comparison of observed characteristic curves with new formula.

F. 8
F. 8

Curves of equal blackening.

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

D = log 10 O .
D = c M .
D = F ( I , t , ) ,
T = e μ ( log It i ) 2 ,
D = μ log 2 It i .
D = D m ( 1 e κ It ) ,
dn = κ I ( N n ) dt ,
γ = ( dD d log E ) Max . ;
d x = I b ( 1 r ) [ e κ x e κ a ] d t ,
D = ρ log 10 [ O ( O 1 ) e q I t ] ,
ρ log 10 O = D m , ρ = γ 1 e log o . }
E a = I ( 1 T a ) ,
Ex = I ( 1 Tx ) .
b . d x = amount of energy absorbed by the unchanged silver grains ;
b . d x = ( E a Ex ) d t .
T a = e κ a ,
Tx = e κ x .
T a x = e κ ( a x ) ;
E a x = I ( 1 T a x ) .
E a = Ex + E a x ,
I ( 1 T a ) = I ( 1 Tx ) + I ( 1 T a x ) ;
e κ a e κ x = e κ a e κ x 1 ,
D = γ { ϕ ( aE ) ϕ ( aE ϑ ) }
ϕ ( n ) = n n 2 2 | 2 _ + n 3 3 | 3 _ n 4 4 | 4 _ +
D = d m [ 1 1 n s = 0 s = n 1 e κ r s It ] .
D = F ( E ) ; E = It .
D = F ( U ) , U = ϕ ( I ; t ) .
δ D = dF dU [ ϕ I δ I + ϕ t δ t ] ;
δ D = dF dU [ I ϕ I δ ( log I ) + t ϕ t δ ( log t ) ] .
D 0 = F ( U 0 ) , U 0 = ϕ ( I 1 ; t 1 ) = ϕ ( I 2 ; t 2 ) .
t ϕ t = ψ ( ϕ ) , I ϕ I = χ ( ϕ ) . }
ϕ = I m m . t n I . t p ,
ϕ = log ( I u t v ) .
time or intensity { t 2 t 4 t I 2 I 4 I } density produced D 0 D 1 D 2
time or intensity { t 2 t 4 t I 2 I 4 I } density produced D 0 D 1 D 2
D 1 = D 1 D 2 = D 2 . . }
ϕ = I . t ,
ϕ = I . t p ,
ϕ = t . I . 10 a ( log I I c ) 2 + 1 ,
t ϕ t = ϕ , I ϕ I = ϕ { 1 a Mod log I I 0 [ ( log I I 0 ) 2 + 1 ] ½ } .
D 0 D 1 D 2 ,
D 0 D 1 D 2 ,
a = 0.21 ; I 0 = .013 meter-Hefners .
p = 1 1 + a .
D = F ( U ) ; U = It p ·
D log I = I dF dU U I = U dF dU ,
D log t = t dF dU U t = pU dF dU ;
D log t = p dD log I ;
D log t = γ t ; D log I = γ I ;
γ t = p γ I .