Abstract

A study of the mechanism of modified Rayleigh scattering has been attempted by more detailed considerations of the “moving mirror” model. A calculation has been made which yields the order of magnitude of the amplitude of the hypersonic waves in liquids. The small amplitude obtained is used to explain the persistence of the modified Brillouin components in glycerine when the macroscopic viscosity is so high that the hypersonic vibrations should no longer be propagated according to the classical hydrodynamic equations.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Brillouin, Ann. de physique 17, 88 (1922).
  2. L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).
  3. E. Gross, Acta Physicochemica U.R.S.S. 20, 459 (1945).
  4. A. Rousset, La Diffusion de la Lumière par les Molécules Rigides, Centre National de la Récherche Scientifique, Paris (1947).
  5. R. S. Ketel, Theorie van het Rayleigh-Verstroiïngstriplet van Vloeistoffen, Martinuius Nijhoff, ‘S-Gravenhage (1946).
  6. J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946), p. 237.
  7. B. V. R. Rao, Proc. Ind. Acad. Sci. 2, 236 (1935).
  8. K. Birus, Physik. Zeits. 39, 80 (1938).
  9. Rank, McCartney, and Szasz, J. Opt. Soc. Am. 38, 287 (1948).
    [CrossRef] [PubMed]
  10. P. Peyrot, Comptes Rendus 203, 1512 (1936).
  11. S. Bhagavantam, Scattering of Light and the Raman Effect (Chemical Publishing Company, Inc., Brooklyn, New York, 1942), p. 84.
  12. C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 362 (1942).
  13. M. Leontowitsch, Zeits. f. Physik 72, 247 (1931).
    [CrossRef]
  14. L. Grunberg and A. H. Nissan, Nature 156, 241 (1945).
    [CrossRef]
  15. L. Hall, Phys. Rev. 73, 775 (1948).
    [CrossRef]

1948 (2)

1945 (2)

L. Grunberg and A. H. Nissan, Nature 156, 241 (1945).
[CrossRef]

E. Gross, Acta Physicochemica U.R.S.S. 20, 459 (1945).

1942 (1)

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 362 (1942).

1938 (1)

K. Birus, Physik. Zeits. 39, 80 (1938).

1936 (1)

P. Peyrot, Comptes Rendus 203, 1512 (1936).

1935 (1)

B. V. R. Rao, Proc. Ind. Acad. Sci. 2, 236 (1935).

1934 (1)

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

1931 (1)

M. Leontowitsch, Zeits. f. Physik 72, 247 (1931).
[CrossRef]

1922 (1)

L. Brillouin, Ann. de physique 17, 88 (1922).

Bhagavantam, S.

S. Bhagavantam, Scattering of Light and the Raman Effect (Chemical Publishing Company, Inc., Brooklyn, New York, 1942), p. 84.

Birus, K.

K. Birus, Physik. Zeits. 39, 80 (1938).

Brillouin, L.

L. Brillouin, Ann. de physique 17, 88 (1922).

Frenkel, J.

J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946), p. 237.

Gross, E.

E. Gross, Acta Physicochemica U.R.S.S. 20, 459 (1945).

Grunberg, L.

L. Grunberg and A. H. Nissan, Nature 156, 241 (1945).
[CrossRef]

Hall, L.

L. Hall, Phys. Rev. 73, 775 (1948).
[CrossRef]

Ketel, R. S.

R. S. Ketel, Theorie van het Rayleigh-Verstroiïngstriplet van Vloeistoffen, Martinuius Nijhoff, ‘S-Gravenhage (1946).

Landau, L.

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

Leontowitsch, M.

M. Leontowitsch, Zeits. f. Physik 72, 247 (1931).
[CrossRef]

McCartney,

Nissan, A. H.

L. Grunberg and A. H. Nissan, Nature 156, 241 (1945).
[CrossRef]

Peyrot, P.

P. Peyrot, Comptes Rendus 203, 1512 (1936).

Placzek, G.

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

Rank,

Rao, B. V. R.

B. V. R. Rao, Proc. Ind. Acad. Sci. 2, 236 (1935).

Rousset, A.

A. Rousset, La Diffusion de la Lumière par les Molécules Rigides, Centre National de la Récherche Scientifique, Paris (1947).

Szasz,

Venkateswaran, C. S.

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 362 (1942).

Acta Physicochemica U.R.S.S. (1)

E. Gross, Acta Physicochemica U.R.S.S. 20, 459 (1945).

Ann. de physique (1)

L. Brillouin, Ann. de physique 17, 88 (1922).

Comptes Rendus (1)

P. Peyrot, Comptes Rendus 203, 1512 (1936).

J. Opt. Soc. Am. (1)

Nature (1)

L. Grunberg and A. H. Nissan, Nature 156, 241 (1945).
[CrossRef]

Phys. Rev. (1)

L. Hall, Phys. Rev. 73, 775 (1948).
[CrossRef]

Physik. Zeits. (1)

K. Birus, Physik. Zeits. 39, 80 (1938).

Physik. Zeits. Sowjetunion (1)

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

Proc. Ind. Acad. Sci. (2)

B. V. R. Rao, Proc. Ind. Acad. Sci. 2, 236 (1935).

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 362 (1942).

Zeits. f. Physik (1)

M. Leontowitsch, Zeits. f. Physik 72, 247 (1931).
[CrossRef]

Other (4)

S. Bhagavantam, Scattering of Light and the Raman Effect (Chemical Publishing Company, Inc., Brooklyn, New York, 1942), p. 84.

A. Rousset, La Diffusion de la Lumière par les Molécules Rigides, Centre National de la Récherche Scientifique, Paris (1947).

R. S. Ketel, Theorie van het Rayleigh-Verstroiïngstriplet van Vloeistoffen, Martinuius Nijhoff, ‘S-Gravenhage (1946).

J. Frenkel, Kinetic Theory of Liquids (Clarendon Press, Oxford, 1946), p. 237.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

F. 1
F. 1

Plot of against distance along the wave train, and schematic diagram of the replacement of the continuous variation of refractive index by discrete plates of refractive index μ0+0 corresponding to the condensations of the Debye waves. Reflections take place at boundaries indicated by Figs. 1–3. Phase changes due to reflections at these boundaries are shown.

Tables (1)

Tables Icon

Table I

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

I c / 2 I B = γ 1 ,
λ = 2 μ 0 λ s sin θ ,
n = cos θ / λ s .
α = ( μ 1 ) 2 .
R γ = 2 2 λ s α = 2 2 λ s ( d μ 0 μ 0 ) 2 .
μ = μ 0 + d μ 0 μ 0 = 1 + d μ 0 μ 0 .
d P = 1 / B · d V / V .
d P = μ 0 · 2 1 4 4 K B ρ ( R λ s γ ) 1 2 .
A = d P / ( 2 π ν c ρ ) ,
E = 2 π 2 A 2 ν 2 ρ .
c = ( 1 / B ρ ) 1 2 , λ s = λ / ( μ 0 2 ) , ( I c / 2 I B ) obs . = r
A = λ 2 16 π ( μ 0 1 ) ( R λ μ 0 ( r + 1 ) ) 1 2 .
E t = R λ ρ c 2 16 ( r + 1 ) · μ 0 ( μ 0 1 ) 2 .
V q = 16 h ( r + 1 ) ( μ 0 1 ) 2 2 R ρ c λ 2 .
( V q ) 1 2 A