Abstract

This paper presents a condensed history of the research on artificial optical fluorite growth which was begun in the middle 1920’s and reduced to practice under N.D.R.C. Contract OEMsr-45 with the Massachusetts Institute of Technology during 1940-45.

Fluorite castings were produced eventually by freezing purified molten CaF2, contained in chemically clean graphite crucibles, in a vacuum-type contrivance patterned after the atmospheric furnace which had been developed earlier for growing lithium fluoride crystals.

The melt was prepared by heating selected fragments of colorless fluorspar mixed with about 2 percent PbF2 which acted as a scavenger to eliminate certain more or less unavoidable impurities, notably products of hydrolysis, and which escaped before the crystallization. In a few instances it was made from a specially synthesized material although this procedure was not wholly desirable.

The crucibles were made by boring, reaming and turning graphite rods which possessed exceptional strength, homogeneity, and chemical purity. Their wall thickness was approximately 0.03 inch when feasible.

Crystallization occurred preferably in a thermal field characterized by a high, nonlinear temperature gradient which remained nearly constant with time.

Specimens chosen from about 1500 crystals, ranging up to 6 inches in diameter, were comparable with good natural fluorite in all essential properties and equal or superior to the best in soundness and dimensions.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Stockbarger, J. Opt. Soc. Am. 14, 488 (1927);Am. Mineral. 12, 26 (1927).
  2. D. C. Stockbarger, Rev. Sci. Inst. 7, 133 (1936);see also D. C. Stockbarger, U. S. Pat. Number 2,149,076.
    [CrossRef]
  3. N.D.R.C. Contract OEMsr-45.
  4. O.S.R.D..
  5. J. W. Mellor, Comprehensive Treatise on Inorganic and Theoretical Chemistry, III (Longmans, Green and Company, New York, 1923).
  6. J. N. Friend, Text-Book of Inorganic Chemistry, III (Charles Griffin and Company, Limited, London, 1925).
  7. E. V. Tsekhnovitser, J. Phys. Chem. (U.S.S.R.),  10, 88 (1937).
  8. G. Heyse, Zeits. f. Physik 63, 138 (1930).
    [CrossRef]
  9. S. Kyropoulos, Zeits. f. anorg. allgem. Chemie 154, 308 (1926).
    [CrossRef]
  10. P. W. Bridgman, Proc. Am. Acad. 60, 305 (1925).
    [CrossRef]
  11. P. W. Bridgman, Patent U. S. Number 1,793,672.
  12. D. C. Stockbarger, Rev. Sci. Inst. 10, 205 (1939).
    [CrossRef]
  13. F. Stöber, Zeits. f. Krist. 61, 299 (1925).
  14. W. Lindgren, Mineral Deposits (McGraw-Hill Book Company, Inc., New York, 1933), p. 635.
  15. N.D.R.C. Contract OEMsr-563 with Princeton University.
  16. E. Fremy, Ann. Chim. Phys. 47, 5 (1856).
  17. D. C. Stockbarger, Faraday Soc. Discussion 5, 299 (1949).
    [CrossRef]
  18. N. Wright, Rev. Sci. Inst. 15, 22 (1944).
    [CrossRef]
  19. D. C. Stockbarger and A. A. Blanchard, Patent U. S. applied for.
  20. D. C. Stockbarger, U. S. Patent Number 2,214,976.
  21. D. C. Stockbarger, Faraday Soc. Discussion 5, 294 (1949).
    [CrossRef]
  22. R. H. Wallace, Plant Physiol. 20, 295 (1945).
  23. E. S. Dana, A Textbook of Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 463.
  24. T. Lyman, Astrophys. J. 25, 45 (1907).
    [CrossRef]
  25. E. C. Schneider, Phys. Rev. 45, 152 (1934).
    [CrossRef]
  26. W. M. Powell, Phys. Rev. 45, 154 (1934).
    [CrossRef]
  27. A. N. Winchell, Elements of Optical Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 31.
  28. N.D.R.C. Contract OEMsr-474.
  29. N.D.R.C. Contract OEMsr-1177.

1949 (2)

D. C. Stockbarger, Faraday Soc. Discussion 5, 299 (1949).
[CrossRef]

D. C. Stockbarger, Faraday Soc. Discussion 5, 294 (1949).
[CrossRef]

1945 (1)

R. H. Wallace, Plant Physiol. 20, 295 (1945).

1944 (1)

N. Wright, Rev. Sci. Inst. 15, 22 (1944).
[CrossRef]

1939 (1)

D. C. Stockbarger, Rev. Sci. Inst. 10, 205 (1939).
[CrossRef]

1937 (1)

E. V. Tsekhnovitser, J. Phys. Chem. (U.S.S.R.),  10, 88 (1937).

1936 (1)

D. C. Stockbarger, Rev. Sci. Inst. 7, 133 (1936);see also D. C. Stockbarger, U. S. Pat. Number 2,149,076.
[CrossRef]

1934 (2)

E. C. Schneider, Phys. Rev. 45, 152 (1934).
[CrossRef]

W. M. Powell, Phys. Rev. 45, 154 (1934).
[CrossRef]

1930 (1)

G. Heyse, Zeits. f. Physik 63, 138 (1930).
[CrossRef]

1927 (1)

D. C. Stockbarger, J. Opt. Soc. Am. 14, 488 (1927);Am. Mineral. 12, 26 (1927).

1926 (1)

S. Kyropoulos, Zeits. f. anorg. allgem. Chemie 154, 308 (1926).
[CrossRef]

1925 (2)

P. W. Bridgman, Proc. Am. Acad. 60, 305 (1925).
[CrossRef]

F. Stöber, Zeits. f. Krist. 61, 299 (1925).

1907 (1)

T. Lyman, Astrophys. J. 25, 45 (1907).
[CrossRef]

1856 (1)

E. Fremy, Ann. Chim. Phys. 47, 5 (1856).

Blanchard, A. A.

D. C. Stockbarger and A. A. Blanchard, Patent U. S. applied for.

Bridgman, P. W.

P. W. Bridgman, Proc. Am. Acad. 60, 305 (1925).
[CrossRef]

P. W. Bridgman, Patent U. S. Number 1,793,672.

Dana, E. S.

E. S. Dana, A Textbook of Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 463.

Fremy, E.

E. Fremy, Ann. Chim. Phys. 47, 5 (1856).

Friend, J. N.

J. N. Friend, Text-Book of Inorganic Chemistry, III (Charles Griffin and Company, Limited, London, 1925).

Heyse, G.

G. Heyse, Zeits. f. Physik 63, 138 (1930).
[CrossRef]

Kyropoulos, S.

S. Kyropoulos, Zeits. f. anorg. allgem. Chemie 154, 308 (1926).
[CrossRef]

Lindgren, W.

W. Lindgren, Mineral Deposits (McGraw-Hill Book Company, Inc., New York, 1933), p. 635.

Lyman, T.

T. Lyman, Astrophys. J. 25, 45 (1907).
[CrossRef]

Mellor, J. W.

J. W. Mellor, Comprehensive Treatise on Inorganic and Theoretical Chemistry, III (Longmans, Green and Company, New York, 1923).

Powell, W. M.

W. M. Powell, Phys. Rev. 45, 154 (1934).
[CrossRef]

Schneider, E. C.

E. C. Schneider, Phys. Rev. 45, 152 (1934).
[CrossRef]

Stöber, F.

F. Stöber, Zeits. f. Krist. 61, 299 (1925).

Stockbarger, D. C.

D. C. Stockbarger, Faraday Soc. Discussion 5, 299 (1949).
[CrossRef]

D. C. Stockbarger, Faraday Soc. Discussion 5, 294 (1949).
[CrossRef]

D. C. Stockbarger, Rev. Sci. Inst. 10, 205 (1939).
[CrossRef]

D. C. Stockbarger, Rev. Sci. Inst. 7, 133 (1936);see also D. C. Stockbarger, U. S. Pat. Number 2,149,076.
[CrossRef]

D. C. Stockbarger, J. Opt. Soc. Am. 14, 488 (1927);Am. Mineral. 12, 26 (1927).

D. C. Stockbarger and A. A. Blanchard, Patent U. S. applied for.

D. C. Stockbarger, U. S. Patent Number 2,214,976.

Tsekhnovitser, E. V.

E. V. Tsekhnovitser, J. Phys. Chem. (U.S.S.R.),  10, 88 (1937).

Wallace, R. H.

R. H. Wallace, Plant Physiol. 20, 295 (1945).

Winchell, A. N.

A. N. Winchell, Elements of Optical Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 31.

Wright, N.

N. Wright, Rev. Sci. Inst. 15, 22 (1944).
[CrossRef]

Ann. Chim. Phys. (1)

E. Fremy, Ann. Chim. Phys. 47, 5 (1856).

Astrophys. J. (1)

T. Lyman, Astrophys. J. 25, 45 (1907).
[CrossRef]

Faraday Soc. Discussion (2)

D. C. Stockbarger, Faraday Soc. Discussion 5, 294 (1949).
[CrossRef]

D. C. Stockbarger, Faraday Soc. Discussion 5, 299 (1949).
[CrossRef]

J. Opt. Soc. Am. (1)

D. C. Stockbarger, J. Opt. Soc. Am. 14, 488 (1927);Am. Mineral. 12, 26 (1927).

J. Phys. Chem. (U.S.S.R.) (1)

E. V. Tsekhnovitser, J. Phys. Chem. (U.S.S.R.),  10, 88 (1937).

Phys. Rev. (2)

E. C. Schneider, Phys. Rev. 45, 152 (1934).
[CrossRef]

W. M. Powell, Phys. Rev. 45, 154 (1934).
[CrossRef]

Plant Physiol. (1)

R. H. Wallace, Plant Physiol. 20, 295 (1945).

Proc. Am. Acad. (1)

P. W. Bridgman, Proc. Am. Acad. 60, 305 (1925).
[CrossRef]

Rev. Sci. Inst. (3)

D. C. Stockbarger, Rev. Sci. Inst. 7, 133 (1936);see also D. C. Stockbarger, U. S. Pat. Number 2,149,076.
[CrossRef]

N. Wright, Rev. Sci. Inst. 15, 22 (1944).
[CrossRef]

D. C. Stockbarger, Rev. Sci. Inst. 10, 205 (1939).
[CrossRef]

Zeits. f. anorg. allgem. Chemie (1)

S. Kyropoulos, Zeits. f. anorg. allgem. Chemie 154, 308 (1926).
[CrossRef]

Zeits. f. Krist. (1)

F. Stöber, Zeits. f. Krist. 61, 299 (1925).

Zeits. f. Physik (1)

G. Heyse, Zeits. f. Physik 63, 138 (1930).
[CrossRef]

Other (13)

P. W. Bridgman, Patent U. S. Number 1,793,672.

N.D.R.C. Contract OEMsr-45.

O.S.R.D..

J. W. Mellor, Comprehensive Treatise on Inorganic and Theoretical Chemistry, III (Longmans, Green and Company, New York, 1923).

J. N. Friend, Text-Book of Inorganic Chemistry, III (Charles Griffin and Company, Limited, London, 1925).

W. Lindgren, Mineral Deposits (McGraw-Hill Book Company, Inc., New York, 1933), p. 635.

N.D.R.C. Contract OEMsr-563 with Princeton University.

D. C. Stockbarger and A. A. Blanchard, Patent U. S. applied for.

D. C. Stockbarger, U. S. Patent Number 2,214,976.

E. S. Dana, A Textbook of Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 463.

A. N. Winchell, Elements of Optical Mineralogy (John Wiley and Sons, Inc., New York, 1932), p. 31.

N.D.R.C. Contract OEMsr-474.

N.D.R.C. Contract OEMsr-1177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

F. 1
F. 1

Artificial fluorite cylinder with polished ends ( 3 3 4 in diameter × 2 in.).

F. 2
F. 2

Cut-away view of typical elevator furnace designed for growing fluorite crystals.

F. 3
F. 3

Elevator seat for supporting crucible during crystallization.

F. 4
F. 4

Experimental top heaters machined from single graphite plates.

F. 5
F. 5

Crucible tools and workpiece before and after machining.

F. 6
F. 6

View of crucible lid with retaining pins.

F. 7
F. 7

Voltage regulator circuit.

F. 8
F. 8

Spectral transmission curve for randomly selected artificial fluorite crystal (thickness 33 mm).

F. 9
F. 9

Heavy-walled graphite box for holding crystals during final heat treatment.

F. 10
F. 10

Interference patterns exhibited by 3.9-inch artificial fluorite specimen in unpolarized light through 1.9 inches. Fringe curvature was caused by surface errors. (Drawn from photographs.)

F. 11
F. 11

Interference patterns exhibited by natural fluorite prism. Variation in fringe appearance was caused by changing path length. (Drawn from photographs.)

Tables (5)

Tables Icon

Table I Spectrochemical analyses (parts per million).

Tables Icon

Table III Ultraviolet transmission limits.

Tables Icon

Table V Comparison between natural and artificial optical fluorite in 1945.*