Abstract

The problem of computing a microscope objective corrected for visible light and for ultraviolet light is reviewed. As it does not seem possible to achieve freedom from chromatic aberrations over this interval with purely refractive objectives of large numerical apertures, a study of catadioptric objectives limited to spherical surfaces is initiated. Catadioptric objectives containing two mirror surfaces may be described as deriving from either the Newtonian or the Schwarzschild telescope objective. Construction data are given for Newtonian objectives which have numerical aperture 1.0 and which are corrected from 220 mμ through the visible spectrum. These modified Newtonian objectives have one serious defect: a large central portion of the aperture is obscured.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Loofbourow, Rev. Mod. Physics 12 (1940).
    [Crossref]
  2. Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
    [Crossref] [PubMed]
  3. L. V. Foster and E. M. Thiel, J. Opt. Soc. Am. 38, 689–692 (1948).
    [Crossref] [PubMed]
  4. B. K. Johnson, An achromatic objective for use in ultraviolet microscopy, Proc. Phys. Soc. 51, 1034–1039 (1949).
    [Crossref]
  5. An ingenious series of objectives which contain partially reflecting surfaces has been computed: B. K. Johnson, An achromatic reflection microscope for use with visible or ultraviolet light. Proc. Phys. Soc. 53, 714–719 (1941).B. K. Johnson, A compound reflecting microscope of high aperture for use in ultraviolet light. J. Sci. Inst. 26 (1949).
    [Crossref]
  6. K. Schwarzschild, Theorie der Spiegeteleskop (Göttingen Observatory, 1905).
  7. D. D. Maksutov, New catadioptric meniscus systems, J. Opt. Soc. Am. 34, 270–284 (1944).
  8. E. H. Linfoot, An application of the Schmidt principle to microscopy, J. Scient. Inst. 15, 405–406 (1938).
    [Crossref]
  9. A. Bouwers, Achievements in Optics (Elsevier Publishing Company, New York, 1946), p. 16–45.

1949 (2)

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

B. K. Johnson, An achromatic objective for use in ultraviolet microscopy, Proc. Phys. Soc. 51, 1034–1039 (1949).
[Crossref]

1948 (1)

1944 (1)

1941 (1)

An ingenious series of objectives which contain partially reflecting surfaces has been computed: B. K. Johnson, An achromatic reflection microscope for use with visible or ultraviolet light. Proc. Phys. Soc. 53, 714–719 (1941).B. K. Johnson, A compound reflecting microscope of high aperture for use in ultraviolet light. J. Sci. Inst. 26 (1949).
[Crossref]

1940 (1)

J. R. Loofbourow, Rev. Mod. Physics 12 (1940).
[Crossref]

1938 (1)

E. H. Linfoot, An application of the Schmidt principle to microscopy, J. Scient. Inst. 15, 405–406 (1938).
[Crossref]

Blout,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Bouwers, A.

A. Bouwers, Achievements in Optics (Elsevier Publishing Company, New York, 1946), p. 16–45.

Flower,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Foster, L. V.

Grey,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Husek,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Johnson, B. K.

B. K. Johnson, An achromatic objective for use in ultraviolet microscopy, Proc. Phys. Soc. 51, 1034–1039 (1949).
[Crossref]

An ingenious series of objectives which contain partially reflecting surfaces has been computed: B. K. Johnson, An achromatic reflection microscope for use with visible or ultraviolet light. Proc. Phys. Soc. 53, 714–719 (1941).B. K. Johnson, A compound reflecting microscope of high aperture for use in ultraviolet light. J. Sci. Inst. 26 (1949).
[Crossref]

Jones,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Land,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Linfoot, E. H.

E. H. Linfoot, An application of the Schmidt principle to microscopy, J. Scient. Inst. 15, 405–406 (1938).
[Crossref]

Loofbourow, J. R.

J. R. Loofbourow, Rev. Mod. Physics 12 (1940).
[Crossref]

Maksutov, D. D.

Matz,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Merrill,

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Schwarzschild, K.

K. Schwarzschild, Theorie der Spiegeteleskop (Göttingen Observatory, 1905).

Thiel, E. M.

J. Opt. Soc. Am. (2)

J. Scient. Inst. (1)

E. H. Linfoot, An application of the Schmidt principle to microscopy, J. Scient. Inst. 15, 405–406 (1938).
[Crossref]

Proc. Phys. Soc. (2)

B. K. Johnson, An achromatic objective for use in ultraviolet microscopy, Proc. Phys. Soc. 51, 1034–1039 (1949).
[Crossref]

An ingenious series of objectives which contain partially reflecting surfaces has been computed: B. K. Johnson, An achromatic reflection microscope for use with visible or ultraviolet light. Proc. Phys. Soc. 53, 714–719 (1941).B. K. Johnson, A compound reflecting microscope of high aperture for use in ultraviolet light. J. Sci. Inst. 26 (1949).
[Crossref]

Rev. Mod. Physics (1)

J. R. Loofbourow, Rev. Mod. Physics 12 (1940).
[Crossref]

Science (1)

Land, Blout, Grey, Flower, Husek, Jones, Matz, and Merrill, A color translating Ultraviolet Microscope, Science 109, 371–374 (1949).
[Crossref] [PubMed]

Other (2)

K. Schwarzschild, Theorie der Spiegeteleskop (Göttingen Observatory, 1905).

A. Bouwers, Achievements in Optics (Elsevier Publishing Company, New York, 1946), p. 16–45.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Newtonian and Schwarzschild types of two-mirror objectives. In the Schwarzschild system (left) a convex mirror is optically located nearer to the long conjugate focus than is the concave mirror.

F. 2
F. 2

Maksutov modification of the Newtonian objectives. The catadioptric Newtonian objectives described in this paper are a further development of this optical system.

F. 3
F. 3

Newtonian objective modified with fluorite refractive elements. This objective at Na 0.95 has maximum spherical aberration of one-quarter wave-length in the range 220 mμ to 540 mμ. Secondary spectrum slightly exceeds the quarter-wave tolerance. Coma is adequately corrected, Construction data for this objective are given in Table I.

F. 4
F. 4

Newtonian objective modified with refractive elements of fused quartz and fluorite. This objective has NA 1.0. The spherical aberration and secondary spectrum for wave-lengths 220 mμ to 540 mμ. are well under one-quarter wave-length. Construction data for this objective are given in Table II.

F. 5
F. 5

Detail of concentric annular reflecting areas on the secondary mirror. The great defect of a catadioptric Newtonian objective for use at large NA is that about SO percent of the objective aperture is obscured by the secondary mirror. A portion of the obscured aperture may be recovered as indicated in this figure.

Tables (2)

Tables Icon

Table I Construction data for the objective illustrated in Fig. 3.,†† All dimensions are in millimeters.

Tables Icon

Table II Construction data for the objective illustrated in Fig. 4. All dimensions are in millimeters.