Abstract

The plastic deformation of cubic thallium halide crystals produced under pressure of a cone perpendicular to the crystal surface, shows two kinds of very sharply limited, raised patterns, namely, the “superficial” and the “transmitted.” In both of these patterns, the shape, symmetry, and position depend on the lattice orientation of the crystal with respect to the observation surface. The first appears around the press point in the form of radial wings. The second develops on the opposite side of the press point and has a square or a rhombic shape. Characteristics of the patterns are explained by the localized distortion of the single crystal around the press point into an aggregate of small crystals. The glide planes (T) of the small crystals lie in the dodecahedron faces (110), and the glide directions (t), in the cubic faces (001). The superficial patterns can be applied to determine the crystal orientation within a few degrees. Inner strains which are not permanent develop symmetrically around the press point. Under pressure of a cone, sodium chloride crystals show splitting along the dodecahedron faces (110), while under the same conditions, silver chloride crystals give only diffuse patterns.

© 1949 Optical Society of America

Full Article  |  PDF Article

Corrections

Alexander Smakula and Myron W. Klein, "Erratum: The Plastic Deformation and Crystal Orientation of Thallium Halides," J. Opt. Soc. Am. 39, 890-890 (1949)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-39-10-890

References

  • View by:
  • |
  • |
  • |

  1. H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896);Verh. d. D. Phys. Ges. 17, 102 (1911);Wied Ann. 69, 576 (1899);Phys. Zeits. 4, 726 (1903);Ann. d. Physik. 26, 615 (1908);Ann. d. Physik. 54, 476 (1895);Ann. d. Physik. 60, 724 (1847).
  2. H. Rather, Optik 1, 296 (1946).
  3. Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945);H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).
    [Crossref]
  4. H. Schroeder, Zeits. f. Physik. 67, 24 (1931);T. Barth, Am. Mineral. 14, 358 (1929).
    [Crossref]
  5. R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).
    [Crossref]
  6. A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, , File XXXIII-9, 8–10 (1945);R. Koops, Optik 3, 298 (1948).
  7. E. K. Plyler, J. Chem. Phys. 15, 885 (1947);Robert Hofstader, Phys. Rev. 72, 1120 (1947);W. L. Hyde, J. Chem. Phys. 16, 744 (1948).
    [Crossref]
  8. Measurements of M. Czerny, see R. Koops, reference 6.
  9. G. Hettner and G. Leisegang, Optik 3, 305 (1948).
  10. Private communication by E. K. Plyler
  11. C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948);E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
    [Crossref]
  12. E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867);G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898);A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902);Fortschr. d. Mineral 3, 100 (1913);Jahrb. d. Rad. and El. 11, 248 (1914).
  13. G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926),
  14. A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928);M. J. Buerger, Am. Mineral. 15, 174 (1930).
  15. The term“glide” is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.
  16. J. F. Nye, Nature 162, 300 (1948).
    [Crossref]
  17. Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

1948 (3)

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948);E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
[Crossref]

J. F. Nye, Nature 162, 300 (1948).
[Crossref]

1947 (2)

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

E. K. Plyler, J. Chem. Phys. 15, 885 (1947);Robert Hofstader, Phys. Rev. 72, 1120 (1947);W. L. Hyde, J. Chem. Phys. 16, 744 (1948).
[Crossref]

1946 (1)

H. Rather, Optik 1, 296 (1946).

1945 (1)

Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945);H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).
[Crossref]

1932 (1)

R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).
[Crossref]

1931 (1)

H. Schroeder, Zeits. f. Physik. 67, 24 (1931);T. Barth, Am. Mineral. 14, 358 (1929).
[Crossref]

1926 (1)

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926),

1896 (1)

H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896);Verh. d. D. Phys. Ges. 17, 102 (1911);Wied Ann. 69, 576 (1899);Phys. Zeits. 4, 726 (1903);Ann. d. Physik. 26, 615 (1908);Ann. d. Physik. 54, 476 (1895);Ann. d. Physik. 60, 724 (1847).

1867 (1)

E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867);G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898);A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902);Fortschr. d. Mineral 3, 100 (1913);Jahrb. d. Rad. and El. 11, 248 (1914).

Barnes, R. B.

R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).
[Crossref]

Boas, W.

The term“glide” is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.

Elliot, A.

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, , File XXXIII-9, 8–10 (1945);R. Koops, Optik 3, 298 (1948).

Flerova,

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

Fuoss, Raymond M.

Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945);H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).
[Crossref]

Gogoberidze,

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

Hettner, G.

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

Joffé, A. F.

A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928);M. J. Buerger, Am. Mineral. 15, 174 (1930).

Leisegang, G.

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

Makas, T.

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948);E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
[Crossref]

Mayes, L. E.

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, , File XXXIII-9, 8–10 (1945);R. Koops, Optik 3, 298 (1948).

Mueller, A.

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926),

Nye, J. F.

J. F. Nye, Nature 162, 300 (1948).
[Crossref]

Plyler, E. K.

E. K. Plyler, J. Chem. Phys. 15, 885 (1947);Robert Hofstader, Phys. Rev. 72, 1120 (1947);W. L. Hyde, J. Chem. Phys. 16, 744 (1948).
[Crossref]

Private communication by E. K. Plyler

Rather, H.

H. Rather, Optik 1, 296 (1946).

Reusch, E.

E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867);G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898);A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902);Fortschr. d. Mineral 3, 100 (1913);Jahrb. d. Rad. and El. 11, 248 (1914).

Rubens, H.

H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896);Verh. d. D. Phys. Ges. 17, 102 (1911);Wied Ann. 69, 576 (1899);Phys. Zeits. 4, 726 (1903);Ann. d. Physik. 26, 615 (1908);Ann. d. Physik. 54, 476 (1895);Ann. d. Physik. 60, 724 (1847).

Schroeder, H.

H. Schroeder, Zeits. f. Physik. 67, 24 (1931);T. Barth, Am. Mineral. 14, 358 (1929).
[Crossref]

Tammann, G.

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926),

Vraski,

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

West, C. D.

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948);E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
[Crossref]

Ann. d. Physik. and Chemie (1)

E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867);G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898);A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902);Fortschr. d. Mineral 3, 100 (1913);Jahrb. d. Rad. and El. 11, 248 (1914).

J. Chem. Phys. (2)

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948);E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
[Crossref]

E. K. Plyler, J. Chem. Phys. 15, 885 (1947);Robert Hofstader, Phys. Rev. 72, 1120 (1947);W. L. Hyde, J. Chem. Phys. 16, 744 (1948).
[Crossref]

J. Tech. Phys. (1)

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

Nature (1)

J. F. Nye, Nature 162, 300 (1948).
[Crossref]

Optik (2)

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

H. Rather, Optik 1, 296 (1946).

Rev. Sci. Inst. (1)

Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945);H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).
[Crossref]

Verh. d. D. Phys. Ges. (1)

H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896);Verh. d. D. Phys. Ges. 17, 102 (1911);Wied Ann. 69, 576 (1899);Phys. Zeits. 4, 726 (1903);Ann. d. Physik. 26, 615 (1908);Ann. d. Physik. 54, 476 (1895);Ann. d. Physik. 60, 724 (1847).

Zeits. f. Metallkunde (1)

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926),

Zeits. f. Physik. (2)

H. Schroeder, Zeits. f. Physik. 67, 24 (1931);T. Barth, Am. Mineral. 14, 358 (1929).
[Crossref]

R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).
[Crossref]

Other (5)

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, , File XXXIII-9, 8–10 (1945);R. Koops, Optik 3, 298 (1948).

Private communication by E. K. Plyler

Measurements of M. Czerny, see R. Koops, reference 6.

A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928);M. J. Buerger, Am. Mineral. 15, 174 (1930).

The term“glide” is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

F. 1
F. 1

Crystal hemisphere of KRS-5 for punch patterns before polishing.

F. 2
F. 2

Pressing goniometer with horizontal and vertical circle.

F. 3
F. 3

The model of KRS-5 sphere used for punch patterns. The cube indicates the crystal orientation. The lines marked 1, 2, and 3 indicate the directions in which the three series of punch patterns shown in Figs. 4, 6, and 7 were taken.

F. 4
F. 4

Punch-pattern sequence from the cubic face (001) to the next cubic face (010). Magnification 5.7.

F. 5
F. 5

Punch-pattern wings on the cubic face.

F. 6
F. 6

Punch-pattern sequence from the cubic face (001) through the octahedron face (111) to the dodecahedron face (110). Magnification 5.7.

F. 7
F. 7

Punch-pattern sequence from the cubic face (001) along the path midway as shown in Fig. 3, under the line marked 2. Magnification 5.7.

F. 8
F. 8

The influence of the load on the length of the press patterns; lower curve: 110-face; upper curve: surface between 001- and 110-face.

F. 9
F. 9

Inner strains formed by punching on the 001-face of KRS-5.

F. 10
F. 10

Inner strains formed by punching on the 110-face of KRS-5.

F. 11
F. 11

Inner strains formed by punching on the 111-face of KRS-5.

F. 12
F. 12

Transmitted punch patterns on KRS-5. Top: by punching on the cube face; bottom: by punching on the dodecahedron face.

F. 13
F. 13

Superficial and transmitted patterns formed by punching on a cubic face.

F. 14
F. 14

Superficial and transmitted patterns formed by punching on a dodecahedron face.

F. 15
F. 15

Superficial and transmitted patterns formed by punching on an octahedron face.

F. 16
F. 16

Punch pattern on silver chloride crystal.

F. 17
F. 17

Punch pattern on cubic face of NaCl.

F. 18
F. 18

Length of superficial wings in dependence of crystal orientation. 0—0 experimental values; ×—× theoretical values.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

l = l 0 cos φ cos λ cos ϑ ,