Abstract

The plastic deformation of cubic thallium halide crystals produced under pressure of a cone perpendicular to the crystal surface, shows two kinds of very sharply limited, raised patterns, namely, the “superficial” and the “transmitted.” In both of these patterns, the shape, symmetry, and position depend on the lattice orientation of the crystal with respect to the observation surface. The first appears around the press point in the form of radial wings. The second develops on the opposite side of the press point and has a square or a rhombic shape. Characteristics of the patterns are explained by the localized distortion of the single crystal around the press point into an aggregate of small crystals. The glide planes (<i>T</i>) of the small crystals lie in the dodecahedron faces (110), and the glide directions (<i>t</i>), in the cubic faces (001). The superficial patterns can be applied to determine the crystal orientation within a few degrees. Inner strains which are not permanent develop symmetrically around the press point. Under pressure of a cone, sodium chloride crystals show splitting along the dodecahedron faces (110), while under the same conditions, silver chloride crystals give only diffuse patterns.

PDF Article

References

  • View by:
  • |
  • |

  1. H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896); 17, 102 (1911); Wied Ann. 69, 576 (1899); Phys. Zeits. 4, 726 (1903); Ann. d. Physik. 26, 615 (1908); 54, 476 (1895); 60, 724 (1847).
  2. H. Rather, Optik 1, 296 (1946).
  3. Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945); H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).
  4. H. Schroeder, Zeits. f. Physik. 67, 24 (1931); T. Barth, Am. Mineral. 14, 358 (1929).
  5. R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).
  6. A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, CIO Subcommittee Report No. 2, File XXXIII-9, 8–10 (1945); R. Koops, Optik 3, 298 (1948).
  7. E. K. Plyler, J. Chem. Phys. 15, 885 (1947); Robert Hofstader, Phys. Rev. 72, 1120 (1947); W. L. Hyde, J. Chem. Phys. 16, 744 (1948).
  8. Measurements of M. Czerny see R. Koops, reference 6.
  9. G. Hettner and G. Leisegang, Optik 3, 305 (1948).
  10. Private communication by E. K. Plyler.
  11. C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948); E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).
  12. E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867); G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898); A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902); Fortschr. d. Mineral 3, 100 (1913); Jahrb. d. Rad. and El. 11, 248 (1914).
  13. G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926).
  14. A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928); M. J. Buerger, Am. Mineral. 15, 174 (1930).
  15. The term "glide"is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.
  16. J. F. Nye, Nature 162, 300 (1948).
  17. Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

Barnes, R. B.

R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).

Boas, W.

The term "glide"is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.

Elliot, A.

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, CIO Subcommittee Report No. 2, File XXXIII-9, 8–10 (1945); R. Koops, Optik 3, 298 (1948).

Fuoss, Raymond M.

Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945); H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).

Hettner, G.

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

Joffé, A. F.

A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928); M. J. Buerger, Am. Mineral. 15, 174 (1930).

Leisegang, G.

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

Makas, T.

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948); E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).

Mayes, L. E.

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, CIO Subcommittee Report No. 2, File XXXIII-9, 8–10 (1945); R. Koops, Optik 3, 298 (1948).

Mueller, A.

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926).

Nye, J. F.

J. F. Nye, Nature 162, 300 (1948).

Plyler, E. K.

E. K. Plyler, J. Chem. Phys. 15, 885 (1947); Robert Hofstader, Phys. Rev. 72, 1120 (1947); W. L. Hyde, J. Chem. Phys. 16, 744 (1948).

Rather, H.

H. Rather, Optik 1, 296 (1946).

Reusch, E.

E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867); G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898); A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902); Fortschr. d. Mineral 3, 100 (1913); Jahrb. d. Rad. and El. 11, 248 (1914).

Rubens, H.

H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896); 17, 102 (1911); Wied Ann. 69, 576 (1899); Phys. Zeits. 4, 726 (1903); Ann. d. Physik. 26, 615 (1908); 54, 476 (1895); 60, 724 (1847).

Schroeder, H.

H. Schroeder, Zeits. f. Physik. 67, 24 (1931); T. Barth, Am. Mineral. 14, 358 (1929).

Tammann, G.

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926).

West, C. D.

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948); E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).

Other (17)

H. Rubens, Verh. d. D. Phys. Ges. 15, 108 (1896); 17, 102 (1911); Wied Ann. 69, 576 (1899); Phys. Zeits. 4, 726 (1903); Ann. d. Physik. 26, 615 (1908); 54, 476 (1895); 60, 724 (1847).

H. Rather, Optik 1, 296 (1946).

Raymond M. Fuoss, Rev. Sci. Inst. 16, 154 (1945); H. C. Kremers, J. Opt. Soc. Am. 37, 337 (1947).

H. Schroeder, Zeits. f. Physik. 67, 24 (1931); T. Barth, Am. Mineral. 14, 358 (1929).

R. B. Barnes, Zeits. f. Physik. 75, 730 (1932).

A. Elliot and L. E. Mayes, German Infrared Devices and Associated Investigations, CIO Subcommittee Report No. 2, File XXXIII-9, 8–10 (1945); R. Koops, Optik 3, 298 (1948).

E. K. Plyler, J. Chem. Phys. 15, 885 (1947); Robert Hofstader, Phys. Rev. 72, 1120 (1947); W. L. Hyde, J. Chem. Phys. 16, 744 (1948).

Measurements of M. Czerny see R. Koops, reference 6.

G. Hettner and G. Leisegang, Optik 3, 305 (1948).

Private communication by E. K. Plyler.

C. D. West and T. Makas, J. Chem. Phys. 16, 427 (1948); E. Burstein and P. L. Smith, Phys. Rev. 74, 229 (1948).

E. Reusch, Ann. d. Physik. and Chemie 132, 443 (1867); G. Muegge, Neu. Jahrb. f. Mineral. 1, 72 (1898); A. Johnson, Neu. Jahrb. f. Mineral. 2, 145 (1902); Fortschr. d. Mineral 3, 100 (1913); Jahrb. d. Rad. and El. 11, 248 (1914).

G. Tammann and A. Mueller, Zeits. f. Metallkunde 18, 69 (1926).

A. F. Joffé, The Physics of Crystals (McGraw-Hill Book Company, Inc., New York, 1928); M. J. Buerger, Am. Mineral. 15, 174 (1930).

The term "glide"is used to indicate the general process of translation and twinning. See: W. Boas, Physics of Metals and Alloys (John Wiley & Sons, Inc., New York, 1947), p. 71.

J. F. Nye, Nature 162, 300 (1948).

Vraski, Gogoberidze, and Flerova, J. Tech. Phys. 17, 723 (1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.