Abstract

Problems encountered in the application of radiation pyrometry in industry are discussed with particular emphasis being placed on the measurement of low surface temperatures (100–400°F). A low range radiation pyrometer for use on such applications is described.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Taken from the appendix of Temperature, Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).
  2. See reference 1, p. 1182.
  3. See reference 1, p. 1186.
  4. J. M. Cork, Heat (John Wiley and Sons, Inc., New York, 1942), second edition, p. 148.
  5. T. R. Harrison and W. H. Wannamaker, Rev. Sci. Inst. 12, 20–32 (1941).
    [CrossRef]
  6. J. C. Mouzon, “A simple temperature controller,” Rev. Sci. Inst. 19, 659 (1948).
    [CrossRef]

1948 (1)

J. C. Mouzon, “A simple temperature controller,” Rev. Sci. Inst. 19, 659 (1948).
[CrossRef]

1941 (1)

T. R. Harrison and W. H. Wannamaker, Rev. Sci. Inst. 12, 20–32 (1941).
[CrossRef]

Cork, J. M.

J. M. Cork, Heat (John Wiley and Sons, Inc., New York, 1942), second edition, p. 148.

Harrison, T. R.

T. R. Harrison and W. H. Wannamaker, Rev. Sci. Inst. 12, 20–32 (1941).
[CrossRef]

Mouzon, J. C.

J. C. Mouzon, “A simple temperature controller,” Rev. Sci. Inst. 19, 659 (1948).
[CrossRef]

Wannamaker, W. H.

T. R. Harrison and W. H. Wannamaker, Rev. Sci. Inst. 12, 20–32 (1941).
[CrossRef]

Rev. Sci. Inst. (2)

T. R. Harrison and W. H. Wannamaker, Rev. Sci. Inst. 12, 20–32 (1941).
[CrossRef]

J. C. Mouzon, “A simple temperature controller,” Rev. Sci. Inst. 19, 659 (1948).
[CrossRef]

Other (4)

Taken from the appendix of Temperature, Its Measurement and Control in Science and Industry (Reinhold Publishing Corporation, New York, 1941).

See reference 1, p. 1182.

See reference 1, p. 1186.

J. M. Cork, Heat (John Wiley and Sons, Inc., New York, 1942), second edition, p. 148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Spectral energy distribution from a blackbody at various temperatures.

Fig. 2
Fig. 2

Emissivity of copper under various surface conditions.

Fig. 3
Fig. 3

Emissivities of various materials as a function of temperature.

Fig. 4
Fig. 4

Transmission of low temperature radiation pyrometer lens.

Fig. 5
Fig. 5

Variation of focal length of a fluorite lens with wave-length. (Radii of curvature R1 = R2 = 0.75 inch.)

Fig. 6
Fig. 6

Relative energy received by thermopile from a blackbody at 212°F.

Fig. 7
Fig. 7

Radiation pyrometer output as a function of humidity.

Fig. 8
Fig. 8

Simplified radiation pyrometer and source.

Fig. 9
Fig. 9

Low temperature radiation pyrometer.

Fig. 10
Fig. 10

Circuit diagram of pyrometer housing temperature controller.

Fig. 11
Fig. 11

Potentiometer circuit for low temperature radiation pyrometer (except for R6 and R7, components are standard for Brown Electronic Potentiometers).

Fig. 12
Fig. 12

Blackbody calibration curve.

Fig. 13
Fig. 13

A field installation of the low temperature radiation pyrometer.

Tables (3)

Tables Icon

Table I Total emissivity of metals.

Tables Icon

Table II Transmission ranges of various optical materials.

Tables Icon

Table III Indices of refraction of fluorite in air at 20°C.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

e σ T 1 4 A 2 sin 2 θ 2 + e σ T 3 4 A 2 ( 1 - sin 2 θ 2 ) = e σ T 2 4 A 2 + C ( T 2 - T 3 ) .
T 1 4 - T 3 4 = ( 1 / sin 2 θ 2 ) [ ( T 2 + T 3 ) ( T 2 2 + T 3 2 ) + ( C / e σ A 2 ) ] ( T 2 - T 3 ) .
T 1 4 - T 3 4 = ( K 1 + ( K 2 / e ) ) ( T 2 - T 3 ) .
E = K 3 ( T 2 - T 3 ) = ( K 3 / K 1 + ( K 2 / e ) ) ( T 1 4 - T 3 4 ) .
T 1 4 = ( E / K 3 ) ( K 1 + ( K 2 / e ) ) , T 1 = ( ( E / K 3 ) ( K 1 + ( K 2 / e ) ) ) 1 4 .
T 1 - T 3 = ( K 1 + ( K 2 / e ) ) ( T 2 - T 3 ) .
E = K 3 ( T 2 - T 3 ) and T 1 - T 3 = ( E / K 3 ) ( K 1 + ( K 2 / e ) ) ( T 2 - T 3 ) . T 1 = ( E / K 3 ) ( K 1 + ( K 2 / e ) ) ( T 2 - T 3 ) + T 3 .