Abstract

The change in spectral sensitivity of unsensitized photographic emulsions with temperature and its connection with light-absorption are investigated.

In the first part, the influence of temperature upon the shape of the spectral-sensitivity curves is considered and graphs are given showing the ratio of the sensitivities at −195°C and room temperature and the ratio of the sensitivities at +50°C and room temperature as a function of wave-length. For pure silver bromide emulsions, these curves show a minimum at about 470 mµ and a maximum at about 500 mµ. For emulsions containing chloride or iodide, the curve shape is somewhat changed but not in its essential features.

In the second part, the absolute change of spectral sensitivity with temperature is discussed. The sensitivity of the basic light-sensitive material, silver bromide, is found to be comparatively little temperature-dependent. The large drop in sensitivity, on lowering the temperature, which is found in commercial emulsions, is due to the chemical sensitization becoming less effective.

In the third part, a tentative explanation is given for the results of the first part. It is assumed that the maximum of the sensitivity-ratio curves at 500 mµ is due to a different temperature-dependence in the light-absorption of the silver bromide and that of the reaction product of the chemical sensitizer with the emulsion (probably silver sulfide) which, in this region, acts as an optical sensitizer. Measurements of the spectral light-absorption of a pure silver bromide emulsion show that the decrease in sensitivity with temperature of this emulsion at 400 mµ is, at least in the main, due to decreased light-absorption and only to a smaller extent to a genuine decrease in light-sensitivity.

It is concluded from the experimental results that there exist two kinds of sensitivity specks: one kind being numerous and consisting of shallow traps, which are mainly responsible for the sensitivity of chemically non-sensitized grains and for that of the interior of chemically sensitized grains; the other kind being few in number and consisting of deep traps, which are responsible for the surface sensitivity of chemically sensitized grains.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Webb, J. Opt. Soc. Am. 25, 4–23 (1935);C. H. Evans and E. Hirschlaff, J. Opt. Soc. Am. 29, 164–167 (1939).
    [Crossref]
  2. Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
    [Crossref]
  3. C. H. Evans, J. Opt. Soc. Am. 32, 214–218 (1942).
    [Crossref]
  4. J. Eggert and M. Biltz, Trans. Faraday Soc. 34, 892–901 (1938);Zeits. f. wiss. Phot. 39, 140–155 (1940);J. Eggert and F. G. Kleinschrod, Zeits. f. wiss. Phot. 39, 155–165, 165–174 (1940); Arens, Eggert, and Kleinschrod, Zeits. f. wiss. Phot. 42, 33–42 (1943).
    [Crossref]
  5. C. H. Evans, J. Opt. Soc. Am. 30, 118–127 (1940).
    [Crossref]
  6. W. F. Berg and K. Mendelssohn, Proc. Roy. Soc. London 168A, 168–175 (1938).
    [Crossref]
  7. Berg, Marriage, and Stevens, J. Opt. Soc. Am. 31, 385–394 (1941).
    [Crossref]
  8. G. W. W. Stevens, Phot. J. 82, 42–47 (1942).
  9. Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
    [Crossref]
  10. It should be mentioned, however, that L. Falla [Bull. Soc. Roy. Sci. Ltége 11, 196–199 (1942)] finds much higher red-sensitivity for the deep internal image than for the surface image.
  11. J. H. Webb, J. Opt. Soc. Am. 23, 316–323 (1933);M. Biltz and J. H. Webb, J. Opt. Soc. Am. 38, 561–569 (1948).
    [Crossref]
  12. W. Meidinger and H. Mucha, Physik. Zeits. 40, 239–240 (1939).
  13. K. Fajans, Radioelements and Isotopes. Chemical Forces and Optical Properties of Substances (McGraw-Hill Book Company, Inc., New York, 1931).
  14. B. Barshchevskii, Proc. Acad. Sci. U.S.S.R. 65, 25–28 (1949).
  15. F. C. Toy and H. A. Edgerton, Phil. Mag. (6) 48, 947–961 (1924).
    [Crossref]
  16. J. Eggert and W. Noddack, Sitz. Preuss. Akad. Wiss., Physik.-math. Kl.116–122 (1923);Zeits. f. Physik 20, 299–314 (1923);Zeits. f. Physik 21, 264 (1924);Zeits. f. Physik 31, 922–941 (1925);Zeits. f. Physik 34, 918–920 (1925).
    [Crossref]
  17. F. Weigert, Zeits. f. Physik 18, 232–237 (1923);Zeits. f. Physik 34, 907–917 (1925).
    [Crossref]
  18. Ostwald, Luther, and Drucker, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen (Akademische Verlagsgesellschaft, Leipzig, 1925), fourth edition, pp. 734–735.
  19. B. H. Carroll (private communication).
  20. J. W. Strutt and Rayleigh, Phil. Mag. (4) 41, 107–120, 274–279 (1871).
  21. P. Compan, Comptes Rendus 128, 1226–1229 (1899).
  22. R. Clausius, Poggendorff’s Ann. d. Physik 72, 294 (1847);Poggendorffs Ann. d. Physik 76, 161, 188 (1849);Poggendorffs Ann. d. Physik 121, 1 (1864).Quoted from Wo. Ostwald, Licht und Farbe in Kolloiden (Theodor Steinkopff Verlag., Dresden and Leipzig, 1924), pp. 11, 80.
    [Crossref]
  23. E. Gretener, Zeits. f. wiss. Phot. 38, 248–286 (1939).
  24. A complete theory of light-scattering as a function of particle size is given by J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 563–573. See also reference 25.
  25. D. Sinclair and V. K. LaMer, Chem. Rev. 44, 245–267 (1949).
    [Crossref] [PubMed]
  26. O. Stasiw and J. Teltow, Göttingen, Nachrichten, Math.-physik. Kl.93–99, 100–109, 110–118 (1941);Math.-physik. Kl.156–163 (1944);Zeits. f, wiss. Phot. 40, 157–165 (1941).
  27. J. Koenigsberger, Ann. d. Physik (4) 4, 796–810 (1901).
    [Crossref]
  28. J. Koenigsberger and K. Kilchling, Ann. d. Physik (4) 28, 889–924 (1909).
    [Crossref]
  29. F. C. Toy and G. B. Harrison, Proc. Roy. Soc. London 127A, 613–628 (1930), p. 626.
    [Crossref]
  30. O. Masaki, Memoirs College of Science, Kyoto Imp. Univ.12A, 127–134 (1929);Sci. et Ind. Photo. (2) 1, 231–237 (1930).
  31. O. D. Barteneva and Yu. N. Gorokhovski, J. Tech. Phys. U.S.S.R. 14, 193–198 (1944).
  32. R. W. Engstrom, J. Opt. Soc. Am. 37, 420–431 (1947);R. Sherr, Rev. Sci. Inst. 18, 767–770 (1947).
    [Crossref]
  33. L. A. Jones, J. Opt. Soc. Am. 7, 305–319 (1923);J. H. Webb, J. Opt. Soc. Am. 23, 157–169 (1933).
    [Crossref]
  34. B. O’Brien, Phys. Rev. 50, 400–101 (1936).
  35. J. Eggert and F. G. Kleinschrod, Zeits. f. physik. Chemie 189, 1–9 (1941).
  36. H. Sauvenier, Bull. Soc. Roy. Sci. Liége 16, 54–59 (1947);Sci. et Ind. Photo. (2) 19, 305–306 (1948);H. Tellez-Plasencia, Sci. et Ind. Photo. (2) 19, 45–56 (1948).
  37. J. R. Haynes, in Preparation and Characteristics of Solid Luminescent Materials (John Wiley and Sons, Inc., New York, 1948),Symposium held at Cornell University, October 24–26, 1946, pp. 430–431;J. R. Haynes and W. Shockley, in Report of a Conference on Strength of Solids, held at H. H. Wills Physical Laboratory, University of Bristol, July 7– 9, 1947 (The Physical Society, London, 1948), pp. 151–157.
  38. K. E. Zimens, Arkiv f. Kemi, Min. Geol.,  23A, No. 16, 1–21 (1947).
  39. To explain experimental results obtained by exposing latent images, formed at −185°C, simultaneously to actinic and bleaching (infra-red) radiation at the same low temperature, W. F. Berg [Trans. Faraday Soc. 35, 445–458 (1939)] assumed that under those conditions electrons may be trapped in two ways: either in shallow and numerous traps, or in deep and relatively fewer traps. He further assumed that the shallow traps exist in the silver halide and the deep traps in the sensitivity nuclei. From the present experiments, it seems to follow that this concept is not restricted to the latent-image formation at low temperature, although in commercial (chemically sensitized) emulsions exposed at room temperature and developed in commercial (substantially surface) developers the significance of the shallow traps is small.
    [Crossref]
  40. M. Bodenstein, Abh. Preuss. Akad. Wiss., Math.-phys. Kl. No. 19, 1–32 (1941).
  41. J. W. Mitchell, Sci. et Ind. Photo. (2) 19, 361–369 (1948);Phil. Mag. (7) 40, 249–268, 667–669 (1949).
  42. See, for example, the review by H. Socher, in Stenger-Staude, Vol. 3 [Akademische Verlagsgesellschaft, Leipzig, (1944)] pp. 113–139.
  43. V. S. Anastasevich and Ya. J. Frenkel, J. Exper. Theor. Phys. U.S.S.R. 11, 127–132 (1941).
  44. W. Lehfeldt, Zeits. f. Physik 85, 717–726 (1933).
    [Crossref]
  45. C. Tubandt, Zeits. f. anorg. Chemie 115, 105–126 (1921).
    [Crossref]
  46. G. Glaser, Ann. d. Physik (5) 27, 217–232 (1936).
    [Crossref]

1949 (2)

B. Barshchevskii, Proc. Acad. Sci. U.S.S.R. 65, 25–28 (1949).

D. Sinclair and V. K. LaMer, Chem. Rev. 44, 245–267 (1949).
[Crossref] [PubMed]

1948 (1)

J. W. Mitchell, Sci. et Ind. Photo. (2) 19, 361–369 (1948);Phil. Mag. (7) 40, 249–268, 667–669 (1949).

1947 (4)

H. Sauvenier, Bull. Soc. Roy. Sci. Liége 16, 54–59 (1947);Sci. et Ind. Photo. (2) 19, 305–306 (1948);H. Tellez-Plasencia, Sci. et Ind. Photo. (2) 19, 45–56 (1948).

K. E. Zimens, Arkiv f. Kemi, Min. Geol.,  23A, No. 16, 1–21 (1947).

R. W. Engstrom, J. Opt. Soc. Am. 37, 420–431 (1947);R. Sherr, Rev. Sci. Inst. 18, 767–770 (1947).
[Crossref]

Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
[Crossref]

1944 (1)

O. D. Barteneva and Yu. N. Gorokhovski, J. Tech. Phys. U.S.S.R. 14, 193–198 (1944).

1942 (3)

It should be mentioned, however, that L. Falla [Bull. Soc. Roy. Sci. Ltége 11, 196–199 (1942)] finds much higher red-sensitivity for the deep internal image than for the surface image.

C. H. Evans, J. Opt. Soc. Am. 32, 214–218 (1942).
[Crossref]

G. W. W. Stevens, Phot. J. 82, 42–47 (1942).

1941 (4)

Berg, Marriage, and Stevens, J. Opt. Soc. Am. 31, 385–394 (1941).
[Crossref]

V. S. Anastasevich and Ya. J. Frenkel, J. Exper. Theor. Phys. U.S.S.R. 11, 127–132 (1941).

J. Eggert and F. G. Kleinschrod, Zeits. f. physik. Chemie 189, 1–9 (1941).

M. Bodenstein, Abh. Preuss. Akad. Wiss., Math.-phys. Kl. No. 19, 1–32 (1941).

1940 (1)

1939 (3)

To explain experimental results obtained by exposing latent images, formed at −185°C, simultaneously to actinic and bleaching (infra-red) radiation at the same low temperature, W. F. Berg [Trans. Faraday Soc. 35, 445–458 (1939)] assumed that under those conditions electrons may be trapped in two ways: either in shallow and numerous traps, or in deep and relatively fewer traps. He further assumed that the shallow traps exist in the silver halide and the deep traps in the sensitivity nuclei. From the present experiments, it seems to follow that this concept is not restricted to the latent-image formation at low temperature, although in commercial (chemically sensitized) emulsions exposed at room temperature and developed in commercial (substantially surface) developers the significance of the shallow traps is small.
[Crossref]

W. Meidinger and H. Mucha, Physik. Zeits. 40, 239–240 (1939).

E. Gretener, Zeits. f. wiss. Phot. 38, 248–286 (1939).

1938 (2)

W. F. Berg and K. Mendelssohn, Proc. Roy. Soc. London 168A, 168–175 (1938).
[Crossref]

J. Eggert and M. Biltz, Trans. Faraday Soc. 34, 892–901 (1938);Zeits. f. wiss. Phot. 39, 140–155 (1940);J. Eggert and F. G. Kleinschrod, Zeits. f. wiss. Phot. 39, 155–165, 165–174 (1940); Arens, Eggert, and Kleinschrod, Zeits. f. wiss. Phot. 42, 33–42 (1943).
[Crossref]

1936 (2)

B. O’Brien, Phys. Rev. 50, 400–101 (1936).

G. Glaser, Ann. d. Physik (5) 27, 217–232 (1936).
[Crossref]

1935 (1)

1934 (1)

Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
[Crossref]

1933 (2)

1930 (1)

F. C. Toy and G. B. Harrison, Proc. Roy. Soc. London 127A, 613–628 (1930), p. 626.
[Crossref]

1924 (1)

F. C. Toy and H. A. Edgerton, Phil. Mag. (6) 48, 947–961 (1924).
[Crossref]

1923 (3)

J. Eggert and W. Noddack, Sitz. Preuss. Akad. Wiss., Physik.-math. Kl.116–122 (1923);Zeits. f. Physik 20, 299–314 (1923);Zeits. f. Physik 21, 264 (1924);Zeits. f. Physik 31, 922–941 (1925);Zeits. f. Physik 34, 918–920 (1925).
[Crossref]

F. Weigert, Zeits. f. Physik 18, 232–237 (1923);Zeits. f. Physik 34, 907–917 (1925).
[Crossref]

L. A. Jones, J. Opt. Soc. Am. 7, 305–319 (1923);J. H. Webb, J. Opt. Soc. Am. 23, 157–169 (1933).
[Crossref]

1921 (1)

C. Tubandt, Zeits. f. anorg. Chemie 115, 105–126 (1921).
[Crossref]

1909 (1)

J. Koenigsberger and K. Kilchling, Ann. d. Physik (4) 28, 889–924 (1909).
[Crossref]

1901 (1)

J. Koenigsberger, Ann. d. Physik (4) 4, 796–810 (1901).
[Crossref]

1899 (1)

P. Compan, Comptes Rendus 128, 1226–1229 (1899).

1871 (1)

J. W. Strutt and Rayleigh, Phil. Mag. (4) 41, 107–120, 274–279 (1871).

1847 (1)

R. Clausius, Poggendorff’s Ann. d. Physik 72, 294 (1847);Poggendorffs Ann. d. Physik 76, 161, 188 (1849);Poggendorffs Ann. d. Physik 121, 1 (1864).Quoted from Wo. Ostwald, Licht und Farbe in Kolloiden (Theodor Steinkopff Verlag., Dresden and Leipzig, 1924), pp. 11, 80.
[Crossref]

Anastasevich, V. S.

V. S. Anastasevich and Ya. J. Frenkel, J. Exper. Theor. Phys. U.S.S.R. 11, 127–132 (1941).

Barshchevskii, B.

B. Barshchevskii, Proc. Acad. Sci. U.S.S.R. 65, 25–28 (1949).

Barteneva, O. D.

O. D. Barteneva and Yu. N. Gorokhovski, J. Tech. Phys. U.S.S.R. 14, 193–198 (1944).

Berg,

Berg, W. F.

To explain experimental results obtained by exposing latent images, formed at −185°C, simultaneously to actinic and bleaching (infra-red) radiation at the same low temperature, W. F. Berg [Trans. Faraday Soc. 35, 445–458 (1939)] assumed that under those conditions electrons may be trapped in two ways: either in shallow and numerous traps, or in deep and relatively fewer traps. He further assumed that the shallow traps exist in the silver halide and the deep traps in the sensitivity nuclei. From the present experiments, it seems to follow that this concept is not restricted to the latent-image formation at low temperature, although in commercial (chemically sensitized) emulsions exposed at room temperature and developed in commercial (substantially surface) developers the significance of the shallow traps is small.
[Crossref]

W. F. Berg and K. Mendelssohn, Proc. Roy. Soc. London 168A, 168–175 (1938).
[Crossref]

Biltz, M.

J. Eggert and M. Biltz, Trans. Faraday Soc. 34, 892–901 (1938);Zeits. f. wiss. Phot. 39, 140–155 (1940);J. Eggert and F. G. Kleinschrod, Zeits. f. wiss. Phot. 39, 155–165, 165–174 (1940); Arens, Eggert, and Kleinschrod, Zeits. f. wiss. Phot. 42, 33–42 (1943).
[Crossref]

Bodenstein, M.

M. Bodenstein, Abh. Preuss. Akad. Wiss., Math.-phys. Kl. No. 19, 1–32 (1941).

Carroll, B. H.

B. H. Carroll (private communication).

Clausius, R.

R. Clausius, Poggendorff’s Ann. d. Physik 72, 294 (1847);Poggendorffs Ann. d. Physik 76, 161, 188 (1849);Poggendorffs Ann. d. Physik 121, 1 (1864).Quoted from Wo. Ostwald, Licht und Farbe in Kolloiden (Theodor Steinkopff Verlag., Dresden and Leipzig, 1924), pp. 11, 80.
[Crossref]

Compan, P.

P. Compan, Comptes Rendus 128, 1226–1229 (1899).

Drucker,

Ostwald, Luther, and Drucker, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen (Akademische Verlagsgesellschaft, Leipzig, 1925), fourth edition, pp. 734–735.

Edgerton, H. A.

F. C. Toy and H. A. Edgerton, Phil. Mag. (6) 48, 947–961 (1924).
[Crossref]

Eggert, J.

J. Eggert and F. G. Kleinschrod, Zeits. f. physik. Chemie 189, 1–9 (1941).

J. Eggert and M. Biltz, Trans. Faraday Soc. 34, 892–901 (1938);Zeits. f. wiss. Phot. 39, 140–155 (1940);J. Eggert and F. G. Kleinschrod, Zeits. f. wiss. Phot. 39, 155–165, 165–174 (1940); Arens, Eggert, and Kleinschrod, Zeits. f. wiss. Phot. 42, 33–42 (1943).
[Crossref]

J. Eggert and W. Noddack, Sitz. Preuss. Akad. Wiss., Physik.-math. Kl.116–122 (1923);Zeits. f. Physik 20, 299–314 (1923);Zeits. f. Physik 21, 264 (1924);Zeits. f. Physik 31, 922–941 (1925);Zeits. f. Physik 34, 918–920 (1925).
[Crossref]

Engstrom, R. W.

Evans, C. H.

Fajans, K.

K. Fajans, Radioelements and Isotopes. Chemical Forces and Optical Properties of Substances (McGraw-Hill Book Company, Inc., New York, 1931).

Falla, L.

It should be mentioned, however, that L. Falla [Bull. Soc. Roy. Sci. Ltége 11, 196–199 (1942)] finds much higher red-sensitivity for the deep internal image than for the surface image.

Frenkel, Ya. J.

V. S. Anastasevich and Ya. J. Frenkel, J. Exper. Theor. Phys. U.S.S.R. 11, 127–132 (1941).

Glaser, G.

G. Glaser, Ann. d. Physik (5) 27, 217–232 (1936).
[Crossref]

Gorokhovski, Yu. N.

O. D. Barteneva and Yu. N. Gorokhovski, J. Tech. Phys. U.S.S.R. 14, 193–198 (1944).

Gretener, E.

E. Gretener, Zeits. f. wiss. Phot. 38, 248–286 (1939).

Harrison, G. B.

F. C. Toy and G. B. Harrison, Proc. Roy. Soc. London 127A, 613–628 (1930), p. 626.
[Crossref]

Haynes, J. R.

J. R. Haynes, in Preparation and Characteristics of Solid Luminescent Materials (John Wiley and Sons, Inc., New York, 1948),Symposium held at Cornell University, October 24–26, 1946, pp. 430–431;J. R. Haynes and W. Shockley, in Report of a Conference on Strength of Solids, held at H. H. Wills Physical Laboratory, University of Bristol, July 7– 9, 1947 (The Physical Society, London, 1948), pp. 151–157.

Jones, L. A.

Keller,

Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
[Crossref]

Kilchling, K.

J. Koenigsberger and K. Kilchling, Ann. d. Physik (4) 28, 889–924 (1909).
[Crossref]

Kleinschrod, F. G.

J. Eggert and F. G. Kleinschrod, Zeits. f. physik. Chemie 189, 1–9 (1941).

Koenigsberger, J.

J. Koenigsberger and K. Kilchling, Ann. d. Physik (4) 28, 889–924 (1909).
[Crossref]

J. Koenigsberger, Ann. d. Physik (4) 4, 796–810 (1901).
[Crossref]

LaMer, V. K.

D. Sinclair and V. K. LaMer, Chem. Rev. 44, 245–267 (1949).
[Crossref] [PubMed]

Lehfeldt, W.

W. Lehfeldt, Zeits. f. Physik 85, 717–726 (1933).
[Crossref]

Luther,

Ostwald, Luther, and Drucker, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen (Akademische Verlagsgesellschaft, Leipzig, 1925), fourth edition, pp. 734–735.

Maetzig,

Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
[Crossref]

Marriage,

Masaki, O.

O. Masaki, Memoirs College of Science, Kyoto Imp. Univ.12A, 127–134 (1929);Sci. et Ind. Photo. (2) 1, 231–237 (1930).

Meidinger, W.

W. Meidinger and H. Mucha, Physik. Zeits. 40, 239–240 (1939).

Mendelssohn, K.

W. F. Berg and K. Mendelssohn, Proc. Roy. Soc. London 168A, 168–175 (1938).
[Crossref]

Mitchell, J. W.

J. W. Mitchell, Sci. et Ind. Photo. (2) 19, 361–369 (1948);Phil. Mag. (7) 40, 249–268, 667–669 (1949).

Möglich,

Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
[Crossref]

Mucha, H.

W. Meidinger and H. Mucha, Physik. Zeits. 40, 239–240 (1939).

Noddack, W.

J. Eggert and W. Noddack, Sitz. Preuss. Akad. Wiss., Physik.-math. Kl.116–122 (1923);Zeits. f. Physik 20, 299–314 (1923);Zeits. f. Physik 21, 264 (1924);Zeits. f. Physik 31, 922–941 (1925);Zeits. f. Physik 34, 918–920 (1925).
[Crossref]

O’Brien, B.

B. O’Brien, Phys. Rev. 50, 400–101 (1936).

Ostwald,

Ostwald, Luther, and Drucker, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen (Akademische Verlagsgesellschaft, Leipzig, 1925), fourth edition, pp. 734–735.

Quirk,

Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
[Crossref]

Rayleigh,

J. W. Strutt and Rayleigh, Phil. Mag. (4) 41, 107–120, 274–279 (1871).

Sauvenier, H.

H. Sauvenier, Bull. Soc. Roy. Sci. Liége 16, 54–59 (1947);Sci. et Ind. Photo. (2) 19, 305–306 (1948);H. Tellez-Plasencia, Sci. et Ind. Photo. (2) 19, 45–56 (1948).

Sheppard,

Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
[Crossref]

Sinclair, D.

D. Sinclair and V. K. LaMer, Chem. Rev. 44, 245–267 (1949).
[Crossref] [PubMed]

Socher, H.

See, for example, the review by H. Socher, in Stenger-Staude, Vol. 3 [Akademische Verlagsgesellschaft, Leipzig, (1944)] pp. 113–139.

Stasiw, O.

O. Stasiw and J. Teltow, Göttingen, Nachrichten, Math.-physik. Kl.93–99, 100–109, 110–118 (1941);Math.-physik. Kl.156–163 (1944);Zeits. f, wiss. Phot. 40, 157–165 (1941).

Stevens,

Stevens, G. W. W.

G. W. W. Stevens, Phot. J. 82, 42–47 (1942).

Stratton, J. A.

A complete theory of light-scattering as a function of particle size is given by J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 563–573. See also reference 25.

Strutt, J. W.

J. W. Strutt and Rayleigh, Phil. Mag. (4) 41, 107–120, 274–279 (1871).

Teltow, J.

O. Stasiw and J. Teltow, Göttingen, Nachrichten, Math.-physik. Kl.93–99, 100–109, 110–118 (1941);Math.-physik. Kl.156–163 (1944);Zeits. f, wiss. Phot. 40, 157–165 (1941).

Toy, F. C.

F. C. Toy and G. B. Harrison, Proc. Roy. Soc. London 127A, 613–628 (1930), p. 626.
[Crossref]

F. C. Toy and H. A. Edgerton, Phil. Mag. (6) 48, 947–961 (1924).
[Crossref]

Tubandt, C.

C. Tubandt, Zeits. f. anorg. Chemie 115, 105–126 (1921).
[Crossref]

Webb, J. H.

Weigert, F.

F. Weigert, Zeits. f. Physik 18, 232–237 (1923);Zeits. f. Physik 34, 907–917 (1925).
[Crossref]

Wightman,

Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
[Crossref]

Zimens, K. E.

K. E. Zimens, Arkiv f. Kemi, Min. Geol.,  23A, No. 16, 1–21 (1947).

Abh. Preuss. Akad. Wiss., Math.-phys. Kl. (1)

M. Bodenstein, Abh. Preuss. Akad. Wiss., Math.-phys. Kl. No. 19, 1–32 (1941).

Ann. d. Physik (4)

G. Glaser, Ann. d. Physik (5) 27, 217–232 (1936).
[Crossref]

Keller, Maetzig, and Möglich, and [Ann. d. Physik (6) 1, 301–316 (1947), p. 311] are of the opinion that there is not an external and an internal latent image but that there are only two kinds of development: a chemical and a physical one. Their experimental results do not seem to support this opinion sufficiently.
[Crossref]

J. Koenigsberger, Ann. d. Physik (4) 4, 796–810 (1901).
[Crossref]

J. Koenigsberger and K. Kilchling, Ann. d. Physik (4) 28, 889–924 (1909).
[Crossref]

Arkiv f. Kemi, Min. Geol. (1)

K. E. Zimens, Arkiv f. Kemi, Min. Geol.,  23A, No. 16, 1–21 (1947).

Bull. Soc. Roy. Sci. Liége (1)

H. Sauvenier, Bull. Soc. Roy. Sci. Liége 16, 54–59 (1947);Sci. et Ind. Photo. (2) 19, 305–306 (1948);H. Tellez-Plasencia, Sci. et Ind. Photo. (2) 19, 45–56 (1948).

Bull. Soc. Roy. Sci. Ltége (1)

It should be mentioned, however, that L. Falla [Bull. Soc. Roy. Sci. Ltége 11, 196–199 (1942)] finds much higher red-sensitivity for the deep internal image than for the surface image.

Chem. Rev. (1)

D. Sinclair and V. K. LaMer, Chem. Rev. 44, 245–267 (1949).
[Crossref] [PubMed]

Comptes Rendus (1)

P. Compan, Comptes Rendus 128, 1226–1229 (1899).

J. Exper. Theor. Phys. U.S.S.R. (1)

V. S. Anastasevich and Ya. J. Frenkel, J. Exper. Theor. Phys. U.S.S.R. 11, 127–132 (1941).

J. Opt. Soc. Am. (7)

J. Phys. Chem. (1)

Sheppard, Wightman, and Quirk, J. Phys. Chem. 38, 817–831 (1934).
[Crossref]

J. Tech. Phys. U.S.S.R. (1)

O. D. Barteneva and Yu. N. Gorokhovski, J. Tech. Phys. U.S.S.R. 14, 193–198 (1944).

Phil. Mag. (2)

F. C. Toy and H. A. Edgerton, Phil. Mag. (6) 48, 947–961 (1924).
[Crossref]

J. W. Strutt and Rayleigh, Phil. Mag. (4) 41, 107–120, 274–279 (1871).

Phot. J. (1)

G. W. W. Stevens, Phot. J. 82, 42–47 (1942).

Phys. Rev. (1)

B. O’Brien, Phys. Rev. 50, 400–101 (1936).

Physik. Zeits. (1)

W. Meidinger and H. Mucha, Physik. Zeits. 40, 239–240 (1939).

Poggendorff’s Ann. d. Physik (1)

R. Clausius, Poggendorff’s Ann. d. Physik 72, 294 (1847);Poggendorffs Ann. d. Physik 76, 161, 188 (1849);Poggendorffs Ann. d. Physik 121, 1 (1864).Quoted from Wo. Ostwald, Licht und Farbe in Kolloiden (Theodor Steinkopff Verlag., Dresden and Leipzig, 1924), pp. 11, 80.
[Crossref]

Proc. Acad. Sci. U.S.S.R. (1)

B. Barshchevskii, Proc. Acad. Sci. U.S.S.R. 65, 25–28 (1949).

Proc. Roy. Soc. London (2)

F. C. Toy and G. B. Harrison, Proc. Roy. Soc. London 127A, 613–628 (1930), p. 626.
[Crossref]

W. F. Berg and K. Mendelssohn, Proc. Roy. Soc. London 168A, 168–175 (1938).
[Crossref]

Sci. et Ind. Photo. (1)

J. W. Mitchell, Sci. et Ind. Photo. (2) 19, 361–369 (1948);Phil. Mag. (7) 40, 249–268, 667–669 (1949).

Sitz. Preuss. Akad. Wiss., Physik.-math. Kl. (1)

J. Eggert and W. Noddack, Sitz. Preuss. Akad. Wiss., Physik.-math. Kl.116–122 (1923);Zeits. f. Physik 20, 299–314 (1923);Zeits. f. Physik 21, 264 (1924);Zeits. f. Physik 31, 922–941 (1925);Zeits. f. Physik 34, 918–920 (1925).
[Crossref]

Trans. Faraday Soc. (2)

J. Eggert and M. Biltz, Trans. Faraday Soc. 34, 892–901 (1938);Zeits. f. wiss. Phot. 39, 140–155 (1940);J. Eggert and F. G. Kleinschrod, Zeits. f. wiss. Phot. 39, 155–165, 165–174 (1940); Arens, Eggert, and Kleinschrod, Zeits. f. wiss. Phot. 42, 33–42 (1943).
[Crossref]

To explain experimental results obtained by exposing latent images, formed at −185°C, simultaneously to actinic and bleaching (infra-red) radiation at the same low temperature, W. F. Berg [Trans. Faraday Soc. 35, 445–458 (1939)] assumed that under those conditions electrons may be trapped in two ways: either in shallow and numerous traps, or in deep and relatively fewer traps. He further assumed that the shallow traps exist in the silver halide and the deep traps in the sensitivity nuclei. From the present experiments, it seems to follow that this concept is not restricted to the latent-image formation at low temperature, although in commercial (chemically sensitized) emulsions exposed at room temperature and developed in commercial (substantially surface) developers the significance of the shallow traps is small.
[Crossref]

Zeits. f. anorg. Chemie (1)

C. Tubandt, Zeits. f. anorg. Chemie 115, 105–126 (1921).
[Crossref]

Zeits. f. Physik (2)

W. Lehfeldt, Zeits. f. Physik 85, 717–726 (1933).
[Crossref]

F. Weigert, Zeits. f. Physik 18, 232–237 (1923);Zeits. f. Physik 34, 907–917 (1925).
[Crossref]

Zeits. f. physik. Chemie (1)

J. Eggert and F. G. Kleinschrod, Zeits. f. physik. Chemie 189, 1–9 (1941).

Zeits. f. wiss. Phot. (1)

E. Gretener, Zeits. f. wiss. Phot. 38, 248–286 (1939).

Other (8)

A complete theory of light-scattering as a function of particle size is given by J. A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc., New York, 1941), pp. 563–573. See also reference 25.

O. Stasiw and J. Teltow, Göttingen, Nachrichten, Math.-physik. Kl.93–99, 100–109, 110–118 (1941);Math.-physik. Kl.156–163 (1944);Zeits. f, wiss. Phot. 40, 157–165 (1941).

O. Masaki, Memoirs College of Science, Kyoto Imp. Univ.12A, 127–134 (1929);Sci. et Ind. Photo. (2) 1, 231–237 (1930).

Ostwald, Luther, and Drucker, Hand- und Hilfsbuch zur Ausführung physikochemischer Messungen (Akademische Verlagsgesellschaft, Leipzig, 1925), fourth edition, pp. 734–735.

B. H. Carroll (private communication).

K. Fajans, Radioelements and Isotopes. Chemical Forces and Optical Properties of Substances (McGraw-Hill Book Company, Inc., New York, 1931).

See, for example, the review by H. Socher, in Stenger-Staude, Vol. 3 [Akademische Verlagsgesellschaft, Leipzig, (1944)] pp. 113–139.

J. R. Haynes, in Preparation and Characteristics of Solid Luminescent Materials (John Wiley and Sons, Inc., New York, 1948),Symposium held at Cornell University, October 24–26, 1946, pp. 430–431;J. R. Haynes and W. Shockley, in Report of a Conference on Strength of Solids, held at H. H. Wills Physical Laboratory, University of Bristol, July 7– 9, 1947 (The Physical Society, London, 1948), pp. 151–157.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (27)

F. 1
F. 1

Spectral sensitivity (cm2 erg−1) of pure silver bromide emulsions at room temperature. a = non-sensitized, average grain size 0.49m2; b = non-sensitized, average grain size 1.43μ2; c = sulfur sensitized by digestion, average grain size 0.49μ2; d = sulfur sensitized by digestion, average grain size 1.43μ2.

F. 2
F. 2

Spectral sensitivity (cm2 erg−1) of pure silver bromide emulsions at −195°C. Meaning of the letters same as in Fig. 1.

F. 3
F. 3

Change of spectral sensitivity with temperature. Ordinate values are logarithms of the ratios of the sensitivities at −195°C and at room temperature. Meaning of the letters same as in Fig. 1.

F. 4
F. 4

Spectral sensitivity (cm2 erg−1) of pure silver bromide emulsions at room temperature. e = non-sensitized; f = sulfur sensitized by digestion below optimum speed; g = sulfur sensitized by digestion to optimum speed.

F. 5
F. 5

Spectral sensitivity (cm2 erg−1) of pure silver bromide emulsions at −195°C. Meaning of the letters same as in Fig. 4.

F. 6
F. 6

Change of spectral sensitivity with temperature. Ordinate values are logarithms of the ratios of the sensitivities at −195°C and at room temperature. Meaning of the letters same as in Fig. 4.

F. 7
F. 7

Spectral sensitivity (cm2 erg−1) of a chlorobromide emulsion (h). 1, at room temperature; 2, at 50°C; 3, at −195°C.

F. 8
F. 8

Spectral sensitivity (cm2 erg−1) of a coarse-grain pure bromide emulsion (i). 1, at room temperature; 2. at 50°C: 3, at −195°C.

F. 9
F. 9

Spectral sensitivity (cm2 erg−1) of a medium-grain pure bromide emulsion (j). 1, at room temperature; 2, at 50°C; 3, at −195°C.

F. 10
F. 10

Spectral sensitivity (cm2 erg−1) of an iodobromide emulsion which was sensitized by digestion below optimum speed (k). 1, at room temperature; 2, at 50°C; 3, at −195°C.

F. 11
F. 11

Spectral sensitivity (cm2 erg−1) of an iodobromide emulsion which was sensitized by digestion to optimum speed (l). 1, at room temperature; 2, at 50°C; 3, at −195°C.

F. 12
F. 12

Change of spectral sensitivity with temperature. Emulsion h. 1, ratio of the sensitivities at 50°C and at room temperature; 2, ratio of the sensitivities at −195°C and at room temperature.

F. 13
F. 13

Change of spectral sensitivity with temperature. Emulsion i. 1, ratio of the sensitivities at 50°C and room temperature; 2, ratio of the sensitivities at −195°C and room temperature.

F. 14
F. 14

Change of spectral sensitivity with temperature. Emulsion j. 1, ratio of the sensitivities at 50°C and at room temperature; 2, ratio of the sensitivities at −195°C and at room temperature.

F. 15
F. 15

Change of spectral sensitivity with temperature. Emulsion k. 1, ratio of the sensitivities at 50°C and at room temperature; 2, ratio of the sensitivities at −195°C and at room temperature.

F. 16
F. 16

Change of spectral sensitivity with temperature. Emulsion l. 1, ratio of the sensitivities at 50°C and at room temperature; 2, ratio of the sensitivities at −195°C and at room temperature.

F. 17
F. 17

Change of spectral sensitivity with temperature for the internal image (1), and the surface image (2), of Emulsion i.

F. 18
F. 18

Sensitivity at 400 mµ (arbitrary units) of the surface and the interior of the grains of pure silver bromide emulsions at room temperature and at −195°C. Exposure time 15 sec. Emulsions same as in Fig. 1.

F. 19
F. 19

Reciprocity-law failure for the surface and the internal sensitivity of pure silver bromide emulsions at room temperature. Ordinate values are logarithms of exposure (arbitrary units) to obtain density 0.5. Straight line—surface, dashes—interior. Emulsions same as in Fig. 1.

F. 20
F. 20

Optical characteristics of Emulsion j.

F. 21
F. 21

Optical characteristics of a gelatin layer of 0.914 mm thickness.

F. 22
F. 22

Connection between sensitivity and light-absorption for Emulsions a, c, k, and l (cf. Fig. 1, 10, and 11). The numbers written beside the points are wave-lengths in mµ.

F. 23
F. 23

Spectral light-absorption of silver bromide (according to Osamu Masaki).

F. 24
F. 24

Spectral light-absorption of Emulsion a at room temperature and at −140°C.

F. 25
F. 25

Spectral light-absorption of a photographic emulsion. These are not experimental curves but are plotted with arbitrary values to illustrate the concepts of the text. (a) Spectral absorption of silver bromide and silver sulfide at room temperature and at −195°C. (b) Change in spectral absorption with temperature. The units of the axis of the ordinates are logarithms of the ratios of the absorption factors at −195° and at room temperature.

F. 26
F. 26

Reciprocity-law failure for the internal sensitivity of Emulsion a and for the surface sensitivity of Emulsion c. Ordinate values are logarithms of exposures (arbitrary units) to obtain density 0.5.

F. 27
F. 27

Dependence of light-absorption at 400 mµ upon temperature for Emulsion a.

Tables (1)

Tables Icon

Table I Percent of total sensitivity due to surface. (Exposure time 15 sec.)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = absorptance of emulsion × [ 1 log ( 1 absorptance of gelatin ) log ( 1 absorptance of emulsion ) ] .