Abstract

The author has investigated the state of orientation of methylene blue molecules absorbed on rubbed glasses. Reflection spectra made with polarized visible radiation demonstrate conclusively that the long axis of the molecules is perpendicular to the direction in which the glass was originally rubbed. Absorption spectra with polarized infra-red radiation show, in addition, that the molecules are adsorbed on the glass with the plane of their benzene ring parallel to the glass.

© 1949 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Zocher, Naturwiss. 13, 1015 (1925).
    [Crossref]
  2. Lucien Demon, Ann. de physique 1, 101 (1946); S. E. Sheppard, R. H. Lambert, and R. D. Walker, J. Chem. Phys. 7, 265 (1939); H. Zocher and K. Coper, Zeits. f. physik. Chemie 132, 295 (1928).
    [Crossref]
  3. W. H. Taylor, Zeits. f. Krist. 91, 450 (1935).
  4. Eugene Rabinovitch and Leo F. Epstein, J. Am. Chem. Soc. 63, 69 (1941).
    [Crossref]
  5. L. Michaelis and S. Granick, J. Am. Chem. Soc. 67, 1212 (1945).
    [Crossref]
  6. C. Schaefer, Zeits. f. Physik 75, 687 (1932).
    [Crossref]
  7. G. N. Lewis and M. Calvin, Chem. Rev. 25, 273 (1939).
    [Crossref]
  8. A. H. Pfund, J. Opt. Soc. Am. 37, 558 (1947).
    [Crossref]
  9. Hydrogen out-of-plane vibrations in benzene are less than 1000 cm−1. In particular, there is a degenerate vibration (10a, b) at 951 cm−1 in benzene and this may have degeneracy splitting. See F. A. Miller and B. L. Crawford, J. Chem. Phys. 14, 282 (1946).
    [Crossref]
  10. See for example, George Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), pp. 338 and 360–361.
  11. This is a vibration designated by 8A, B by Kenneth S. Pitzer and Donald W. Scott, J. Am. Chem. Soc. 65, 803 (esp. p. 815) (1943).
    [Crossref]

1947 (1)

1946 (2)

Lucien Demon, Ann. de physique 1, 101 (1946); S. E. Sheppard, R. H. Lambert, and R. D. Walker, J. Chem. Phys. 7, 265 (1939); H. Zocher and K. Coper, Zeits. f. physik. Chemie 132, 295 (1928).
[Crossref]

Hydrogen out-of-plane vibrations in benzene are less than 1000 cm−1. In particular, there is a degenerate vibration (10a, b) at 951 cm−1 in benzene and this may have degeneracy splitting. See F. A. Miller and B. L. Crawford, J. Chem. Phys. 14, 282 (1946).
[Crossref]

1945 (1)

L. Michaelis and S. Granick, J. Am. Chem. Soc. 67, 1212 (1945).
[Crossref]

1943 (1)

This is a vibration designated by 8A, B by Kenneth S. Pitzer and Donald W. Scott, J. Am. Chem. Soc. 65, 803 (esp. p. 815) (1943).
[Crossref]

1941 (1)

Eugene Rabinovitch and Leo F. Epstein, J. Am. Chem. Soc. 63, 69 (1941).
[Crossref]

1939 (1)

G. N. Lewis and M. Calvin, Chem. Rev. 25, 273 (1939).
[Crossref]

1935 (1)

W. H. Taylor, Zeits. f. Krist. 91, 450 (1935).

1932 (1)

C. Schaefer, Zeits. f. Physik 75, 687 (1932).
[Crossref]

1925 (1)

H. Zocher, Naturwiss. 13, 1015 (1925).
[Crossref]

Calvin, M.

G. N. Lewis and M. Calvin, Chem. Rev. 25, 273 (1939).
[Crossref]

Crawford, B. L.

Hydrogen out-of-plane vibrations in benzene are less than 1000 cm−1. In particular, there is a degenerate vibration (10a, b) at 951 cm−1 in benzene and this may have degeneracy splitting. See F. A. Miller and B. L. Crawford, J. Chem. Phys. 14, 282 (1946).
[Crossref]

Demon, Lucien

Lucien Demon, Ann. de physique 1, 101 (1946); S. E. Sheppard, R. H. Lambert, and R. D. Walker, J. Chem. Phys. 7, 265 (1939); H. Zocher and K. Coper, Zeits. f. physik. Chemie 132, 295 (1928).
[Crossref]

Epstein, Leo F.

Eugene Rabinovitch and Leo F. Epstein, J. Am. Chem. Soc. 63, 69 (1941).
[Crossref]

Granick, S.

L. Michaelis and S. Granick, J. Am. Chem. Soc. 67, 1212 (1945).
[Crossref]

Herzberg, George

See for example, George Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), pp. 338 and 360–361.

Lewis, G. N.

G. N. Lewis and M. Calvin, Chem. Rev. 25, 273 (1939).
[Crossref]

Michaelis, L.

L. Michaelis and S. Granick, J. Am. Chem. Soc. 67, 1212 (1945).
[Crossref]

Miller, F. A.

Hydrogen out-of-plane vibrations in benzene are less than 1000 cm−1. In particular, there is a degenerate vibration (10a, b) at 951 cm−1 in benzene and this may have degeneracy splitting. See F. A. Miller and B. L. Crawford, J. Chem. Phys. 14, 282 (1946).
[Crossref]

Pfund, A. H.

Pitzer, Kenneth S.

This is a vibration designated by 8A, B by Kenneth S. Pitzer and Donald W. Scott, J. Am. Chem. Soc. 65, 803 (esp. p. 815) (1943).
[Crossref]

Rabinovitch, Eugene

Eugene Rabinovitch and Leo F. Epstein, J. Am. Chem. Soc. 63, 69 (1941).
[Crossref]

Schaefer, C.

C. Schaefer, Zeits. f. Physik 75, 687 (1932).
[Crossref]

Scott, Donald W.

This is a vibration designated by 8A, B by Kenneth S. Pitzer and Donald W. Scott, J. Am. Chem. Soc. 65, 803 (esp. p. 815) (1943).
[Crossref]

Taylor, W. H.

W. H. Taylor, Zeits. f. Krist. 91, 450 (1935).

Zocher, H.

H. Zocher, Naturwiss. 13, 1015 (1925).
[Crossref]

Ann. de physique (1)

Lucien Demon, Ann. de physique 1, 101 (1946); S. E. Sheppard, R. H. Lambert, and R. D. Walker, J. Chem. Phys. 7, 265 (1939); H. Zocher and K. Coper, Zeits. f. physik. Chemie 132, 295 (1928).
[Crossref]

Chem. Rev. (1)

G. N. Lewis and M. Calvin, Chem. Rev. 25, 273 (1939).
[Crossref]

J. Am. Chem. Soc. (3)

This is a vibration designated by 8A, B by Kenneth S. Pitzer and Donald W. Scott, J. Am. Chem. Soc. 65, 803 (esp. p. 815) (1943).
[Crossref]

Eugene Rabinovitch and Leo F. Epstein, J. Am. Chem. Soc. 63, 69 (1941).
[Crossref]

L. Michaelis and S. Granick, J. Am. Chem. Soc. 67, 1212 (1945).
[Crossref]

J. Chem. Phys. (1)

Hydrogen out-of-plane vibrations in benzene are less than 1000 cm−1. In particular, there is a degenerate vibration (10a, b) at 951 cm−1 in benzene and this may have degeneracy splitting. See F. A. Miller and B. L. Crawford, J. Chem. Phys. 14, 282 (1946).
[Crossref]

J. Opt. Soc. Am. (1)

Naturwiss. (1)

H. Zocher, Naturwiss. 13, 1015 (1925).
[Crossref]

Zeits. f. Krist. (1)

W. H. Taylor, Zeits. f. Krist. 91, 450 (1935).

Zeits. f. Physik (1)

C. Schaefer, Zeits. f. Physik 75, 687 (1932).
[Crossref]

Other (1)

See for example, George Herzberg, Infrared and Raman Spectra (D. Van Nostrand Company, Inc., New York, 1945), pp. 338 and 360–361.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Twinning in methylene blue chloride. The b axes of the individual molecules are up and down 90° with respect to the plane of the lath shaped crystal. Dimensions of unit monoclinic cell: a=9.5A, b=31.3A, c=6.9A, α=90, β=97, γ=90, The molecule sketched in the break is to indicate that its length is perpendicular to the 〈acAv face. The x, y, and z in parentheses show the position of the x, y, and z semimajor axes of the electron cloud hypothesized by Lewis and Calvin.

Fig. 2
Fig. 2

Randomly oriented methylene blue crystals on unrubbed plate. (a) Illustrates the color when viewed by reflection at near normal incidence (natural light); (b) Crystals viewed at an angle of incidence near 90° with respect to the normal to the plate. Sides and ends of crystals situated properly to reflect the light send back a bright green-gold color so that the complete surface appears to be brightly colored.

Fig. 3
Fig. 3

Plot of index of refraction of highly absorbing medium. Continuous line indicates position of absorption band. Broken line plots course of index of refraction for electric vector vibrating in the plane of greatest absorption. Dotted line indicates curve for a transparent body or for a vector vibrating in a plane perpendicular to the plane of greatest absorption.

Fig. 4
Fig. 4

Reflection spectra employing Hg-Ne discharge tube into which some air had leaked. Spectra made with a Hilger E2 (glass parts), Eastman 50 plate. All exposures given are based on No. 1 as unity. 1. Reflection spectrum from clean glass plate—natural light (exposure −1). 2. Reflection from oriented methylene blue film. Electric vector perpendicular to direction in which glass was originally rubbed (exposure −1). 3. Reflection from oriented methylene blue film. Electric vector parallel to direction in which glass was originally rubbed (exposure −1). 4. Reflection from edge ((100) face) of methylene blue single crystal. Electric vector perpendicular to length of crystal (parallel to b direction of individual molecules) (exposure −20). 5. Reflection from edge ((100) face) of methylene blue single crystal. Electric vector parallel to length of crystal (perpendicular to length of individual molecules). This is so faint that only one line shows on this plate (exposure −20). 6. Transmission spectrum of plate with oriented methylene blue film on it. Continuum from incandescent tungsten ribbon. 7. Continuum used for Spectrum 6. 8. Reflection from (010) face of methylene blue single crystal. Electric vector parallel to length of crystal and perpendicular to plane of individual molecules (exposure −20). 9. Reflection from (010) face of methylene blue single crystal. Electric vector perpendicular to length of crystal and parallel to plane of individual molecules (exposure −20).

Fig. 5
Fig. 5

Schematic drawing of infra-red spectrometer with polarizing attachment. Radiation polarized perpendicular to plane of diagram.

Fig. 6
Fig. 6

Infra-red absorption spectra of methylene blue on freshly cleaved rock salt. Full line—randomly oriented crystals, long axis of individual molecules perpendicular to the surface of the salt plate and parallel to beam of radiation. Dotted line—absorption spectrum of molecules oriented by rubbing. Infra-red polarized with electric vector vibrating perpendicular to length of molecules. Broken line—absorption spectrum of molecules oriented by rubbing. Infra-red radiation polarized with electric vector vibrating parallel to length of molecules.