Abstract

The preceding papers of this series have examined the properties of an optical calculus which represented each of the separate elements of an optical system by means of a single matrix M. This paper is concerned with the properties of matrices, denoted by N, which refer not to the complete element, but only to a given infinitesimal path length within the element.

If M is the matrix of the optical element up to the point z, where z is measured along the light path, then the Nmatrix at the point z is defined by N ≡ (dM/dz)M-1. (A) Thus one may write symbolically, N=dlogM/dz (B) and M = M0exp(∫Ndz). (C)

A general introduction is contained in Part I. The definition and general properties of the N-matrices are treated in Part II. Part III contains a detailed discussion of the important special case in which the optical medium is homogeneous, so that N is independent of z; Part III contains in Eq. (3.26) the explicit relation which corresponds to the symbolic relation (C). Part IV describes a systematic method, based on the N-matrices, by which the optical properties of the system at each point may be described uniquely and quantitatively as a combination of a certain amount of linear birefringence, a certain amount of circular dichroism, etc.; the method of resolution is indicated in Table I. Part V treats the properties of the inhomogeneous crystal which is obtained by twisting a homogeneous crystal about an axis parallel to the light path.

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription