Abstract

The distances at which a series of rectangular test objects are visible were determined experimentally. These test objects were black opaque rectangles having variable length-width ratios and were viewed against a trans-luminated background. Using these data, and an assumed nystagmic motion of the eyeball, the summated temporal illuminance gradients on the retina were computed. These values were found to be essentially constant, even though the length-width ratios of the test objects varied from 1 to 4050. Assuming a motionless eyeball, that is, perfect fixation, the summated values of ΔI were computed for the same observational conditions, ΔI being defined as the difference between the average illuminance incident on adjacent cones in the retinal mosaic. The values of summated ΔI are not constant. Since all of these test objects were just visible at the distance measured, they may be considered as being equal to each other with respect to their ability to excite a threshold neural response. It seems reasonable to conclude, therefore, that since the values of the summated temporal gradients are constant they are the most significant indices of the relative magnitudes of the neural responses. In our opinion these results lend considerable support to the assumption that the perception of inhomogeneities of luminance in the visual field is dependent directly upon the temporal illuminance gradients to which the retinal receptors are subjected by virtue of the movement of the image with respect to the retinal mosaic.

© 1948 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Small field tritanopia in the peripheral retina

Vicki J. Volbrecht
J. Opt. Soc. Am. A 33(7) 1226-1235 (2016)

Visual adaptation—a reinterpretation: discussion

Donald Laming
J. Opt. Soc. Am. A 30(10) 2066-2078 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription