Abstract

For routine quantitative spectrographic analysis of phosphorus, using the line at 2136A, the Geiger-Müller photoelectron counter has certain advantages over both the photographic plate and the electron multiplier photo-tube. The construction of the counters and the methods of electrically shielding and mounting them on the Littrow spectrograph are briefly described. The adjustments of counter orientation, slit widths, and focus are discussed with reference to the analyses of ferrous alloys where good resolution is necessary. Because of the absorption of radiation by quartz at low wave-lengths, both absolute and relative intensities are dependent upon the position of the arc on the electrode surface. This effect, which results in appreciable error in the measured percentage composition of a sample, is investigated photographically and with G-M counters, and several methods of reducing the effect are discussed. The effect of temperature changes of the dispersing prism on line position is investigated and a suitable method of control is mentioned. Preliminary consideration of this direct-reading method shows that it seems possible to reduce the various errors so that the source fluctuation is the controlling factor.

© 1948 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. A. Boettner and G. P. Brewington, J. Opt. Soc. Am. 34, 6 (1944).
    [Crossref]
  2. M. F. Hasler and H. W. Dietert, J. Opt. Soc. Am. 34, 751 (1944).
    [Crossref]
  3. G. A. Nahstoll and F. R. Bryan, J. Opt. Soc. Am. 35, 646 (1945).
    [Crossref]
  4. D. L. Saunderson, V. J. Caldecourt, and E. W. Peterson, J. Opt. Soc. Am. 35, 681 (1945).
    [Crossref] [PubMed]
  5. G. H. Dieke and H. M. Crosswhite, J. Opt. Soc. Am. 36, 192 (1946).
    [PubMed]
  6. K. G. Kessler and R. A. Wolfe, J. Opt. Soc. Am. 37, 133 (1947).
    [Crossref] [PubMed]
  7. O. S. Duffendack and W. E. Morris, J. Opt. Soc. Am. 32, 8 (1942). Our attention has been called to a recent article by Borison and Fogel, J. Exper. and Theoret. Phys., U.S.S.R. 17, No. 5 (May, 1947), on the use of Geiger-Müller counters in quantitative spectrographic analysis.
    [Crossref]
  8. O. S. Duffendack and K. Thomson, Proc. Am. Soc. Test. Mat. 36, 301 (1936).
  9. J. H. Enns and R. A. Wolfe, Paper presented at the A.S.T.M. Symposium on Spectroscopic Light Sources, June 20, 1946, at Buffalo, New York.
  10. O. S. Duffendack, H. Lifschutz, and M. M. Slawsky, Phys. Rev. 52, 1231 (1937).
    [Crossref]
  11. O. S. Duffendack and W. E. Morris, J. Opt. Soc. Am. 32, 8 (1942).
    [Crossref]
  12. W. Christoph, Ann. d. Physik 26, 145 (1936).
    [Crossref]
  13. J. L. Saunderson, V. J. Caldecourt, and E. W. Petersen, J. Opt. Soc. Am. 35, 681 (1945).
    [Crossref] [PubMed]
  14. H. Lifschutz, Rev. Sci. Inst. 10, 21 (1939).
    [Crossref]
  15. H. V. Neher and W. W. Harper, Phys. Rev. 49, 940 (1936).
    [Crossref]
  16. M. F. Hasler and H. W. Dietert, J. Opt. Soc. Am. 34, 751 (1944).
    [Crossref]
  17. R. A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., New York, 1944), p. 118 ff.
  18. T. R. Merton, Proc. Roy. Soc. 113A, 704 (1927).
    [Crossref]
  19. R. M. Sawyer and H. B. Vincent, J. Opt. Soc. Am. 31, 47 (1941).
    [Crossref]
  20. H. H. Grossman, R. H. Sawyer, and H. B. Vincent, J. Opt. Soc. Am. 33, 185 (1943).
    [Crossref]

1947 (1)

1946 (1)

1945 (3)

1944 (3)

1943 (1)

1942 (2)

1941 (1)

1939 (1)

H. Lifschutz, Rev. Sci. Inst. 10, 21 (1939).
[Crossref]

1937 (1)

O. S. Duffendack, H. Lifschutz, and M. M. Slawsky, Phys. Rev. 52, 1231 (1937).
[Crossref]

1936 (3)

O. S. Duffendack and K. Thomson, Proc. Am. Soc. Test. Mat. 36, 301 (1936).

H. V. Neher and W. W. Harper, Phys. Rev. 49, 940 (1936).
[Crossref]

W. Christoph, Ann. d. Physik 26, 145 (1936).
[Crossref]

1927 (1)

T. R. Merton, Proc. Roy. Soc. 113A, 704 (1927).
[Crossref]

Boettner, E. A.

Brewington, G. P.

Bryan, F. R.

Caldecourt, V. J.

Christoph, W.

W. Christoph, Ann. d. Physik 26, 145 (1936).
[Crossref]

Crosswhite, H. M.

Dieke, G. H.

Dietert, H. W.

Duffendack, O. S.

Enns, J. H.

J. H. Enns and R. A. Wolfe, Paper presented at the A.S.T.M. Symposium on Spectroscopic Light Sources, June 20, 1946, at Buffalo, New York.

Grossman, H. H.

Harper, W. W.

H. V. Neher and W. W. Harper, Phys. Rev. 49, 940 (1936).
[Crossref]

Hasler, M. F.

Kessler, K. G.

Lifschutz, H.

H. Lifschutz, Rev. Sci. Inst. 10, 21 (1939).
[Crossref]

O. S. Duffendack, H. Lifschutz, and M. M. Slawsky, Phys. Rev. 52, 1231 (1937).
[Crossref]

Merton, T. R.

T. R. Merton, Proc. Roy. Soc. 113A, 704 (1927).
[Crossref]

Morris, W. E.

Nahstoll, G. A.

Neher, H. V.

H. V. Neher and W. W. Harper, Phys. Rev. 49, 940 (1936).
[Crossref]

Petersen, E. W.

Peterson, E. W.

Saunderson, D. L.

Saunderson, J. L.

Sawyer, R. A.

R. A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., New York, 1944), p. 118 ff.

Sawyer, R. H.

Sawyer, R. M.

Slawsky, M. M.

O. S. Duffendack, H. Lifschutz, and M. M. Slawsky, Phys. Rev. 52, 1231 (1937).
[Crossref]

Thomson, K.

O. S. Duffendack and K. Thomson, Proc. Am. Soc. Test. Mat. 36, 301 (1936).

Vincent, H. B.

Wolfe, R. A.

K. G. Kessler and R. A. Wolfe, J. Opt. Soc. Am. 37, 133 (1947).
[Crossref] [PubMed]

J. H. Enns and R. A. Wolfe, Paper presented at the A.S.T.M. Symposium on Spectroscopic Light Sources, June 20, 1946, at Buffalo, New York.

Ann. d. Physik (1)

W. Christoph, Ann. d. Physik 26, 145 (1936).
[Crossref]

J. Opt. Soc. Am. (12)

Phys. Rev. (2)

H. V. Neher and W. W. Harper, Phys. Rev. 49, 940 (1936).
[Crossref]

O. S. Duffendack, H. Lifschutz, and M. M. Slawsky, Phys. Rev. 52, 1231 (1937).
[Crossref]

Proc. Am. Soc. Test. Mat. (1)

O. S. Duffendack and K. Thomson, Proc. Am. Soc. Test. Mat. 36, 301 (1936).

Proc. Roy. Soc. (1)

T. R. Merton, Proc. Roy. Soc. 113A, 704 (1927).
[Crossref]

Rev. Sci. Inst. (1)

H. Lifschutz, Rev. Sci. Inst. 10, 21 (1939).
[Crossref]

Other (2)

R. A. Sawyer, Experimental Spectroscopy (Prentice-Hall, Inc., New York, 1944), p. 118 ff.

J. H. Enns and R. A. Wolfe, Paper presented at the A.S.T.M. Symposium on Spectroscopic Light Sources, June 20, 1946, at Buffalo, New York.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The Geiger-Müller counter. The pumping stem and the side arm holding the cathode are in the same plane, allowing the counter boxes to be small and, therefore, a close line pair to be used.

Fig. 2
Fig. 2

The two Geiger-Müller counters mounted on the Bausch & Lomb Littrow spectrograph. The leads to the quenching circuits come out at the top of the counter boxes. The entire mounting is removed as a unit from the camera by sliding it horizontally to the right as in the case of the photographic plateholder.

Fig. 3
Fig. 3

Intensity as a function of rotation angle, φ. The full curve is the equation I=278 exp(−0.729 cosφ) and the dots are experimental points using the copper line 2135.976A. The angle φ measures the position of the arc on the electrode circumference and is zero when the light passes through a maximum thickness of quartz.

Fig. 4
Fig. 4

Intensity ratio as a function of rotation angle, φ. The full curve is the equation R=0.734 exp(−0.184 cosφ) and the dots the experimental values of the ratio of the two copper lines, 2135.976 to 2276.253A.

Fig. 5
Fig. 5

Average deviation of a single determination of intensity ratio from the mean value as a function of wave-length separation of the two lines, measured photographically. Dots represent deviations of ratios calculated with line P 2136.199A, open circles with line Fe 2270.860A. The intercept at zero wave-length separation is considered to represent the emulsion and source errors. The fluctuation of the points about the curve is due to the fact that the intensity ratio is a function of mean wave-length as well as wave-length difference.

Fig. 6
Fig. 6

Line position as a function of time for seven copper lines in the region 2104 to 2190A. Plotted below are temperature readings taken at the dispersing prism. An increase in temperature results in an apparent increase in wave-length.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I = C 1 exp [ - C 2 cos φ ] ,
R = ( I 01 / I 02 ) exp - [ ( k 1 - k 2 ) x ] ,
d λ / d T = ( d n / d T ) / ( d n / d λ ) .