Abstract

A table is presented for the radiation from a Planckian radiator operating between 2000 and 3500°K (100° intervals). Values of J(λ) are given for a wave-length range of 0.38 to 0.76μ at 0.01μ intervals. This is part of a more extensive table (10° intervals) that has been published.

© 1948 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Frehafer and Snow, “Tables and graphs for facilitating computations of spectral energy distributions,” Bur. Stand. Misc. Pub. No. 56 (1925); F. E. Fowle, “Radiation from a perfect (blackbody) radiator,” International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1929), Vol. V, pp. 239–241; C. Fabry, Introduction générale à la photométrie (Paris, 1927), p. 121; J. F. Skogland, “Tables of spectral energy distribution,” Bur. Stand. Misc. Pub. No. 86 (1929); Yamauti and Okamatu, “Tables of Planck’s formula of radiation,” Res. El. Lab., Tokyo, No.  395 (1936).
  2. Parry Moon, “A table of Planck’s function from 3500 to 8000°K,” J. Math. Phys. 16, 133 (1937); Massachusetts Institute of Technology, Elec. Eng. Dept., Contribution No. 131, 1938.
  3. Parry Moon, A Table of Planck’s Function 2000 to 3500°K (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1947).
  4. G. K. Burgess, “The international temperature scale,” Bur. Stand. J. Research 1, 635 (1928).
    [CrossRef]
  5. R. T. Birge, “Probable values of the general physical constants,” Rev. Mod. Phys. 1, 1 (1929).
    [CrossRef]
  6. Used also in the previous table (reference 2) and in other works. See, for instance, Scientific Basis of Illuminating Engineering (McGraw-Hill Book Company, Inc., New York, 1936); Lighting Design (Addison-Wesley Press, Cambridge, Massachusetts, 1938).
  7. Commission Internationale de l’Éclairage, Compte rendu des séances (Cambridge University Press, Teddington, England, 1932), p. 19.
  8. H. T. Wensel, “The international temperature scale and some related physical constants,” Bur. Stands. J. Research 22, 375 (1939).
    [CrossRef]
  9. H. G. W. Harding, “Colors of total radiators expressed on the C.I.E. trichromatic system,” Phys. Soc. Proc. (London) 58, 1 (1946).
    [CrossRef]
  10. O.S.A. Colorimetry Committee, “Quantitative data and methods for colorimetry,” J. Opt. Soc. Am. 34, 633 (1944); D. L. MacAdam, “Note concerning the maximum luminous efficiency of radiant energy,” J. Opt. Soc. Am. 35, 615 (1945).
    [CrossRef]
  11. R. T. Birge, “The general physical constants,” Reports on Progress in Physics8, 90 (1942).
    [CrossRef]

1946 (1)

H. G. W. Harding, “Colors of total radiators expressed on the C.I.E. trichromatic system,” Phys. Soc. Proc. (London) 58, 1 (1946).
[CrossRef]

1944 (1)

1939 (1)

H. T. Wensel, “The international temperature scale and some related physical constants,” Bur. Stands. J. Research 22, 375 (1939).
[CrossRef]

1937 (1)

Parry Moon, “A table of Planck’s function from 3500 to 8000°K,” J. Math. Phys. 16, 133 (1937); Massachusetts Institute of Technology, Elec. Eng. Dept., Contribution No. 131, 1938.

1929 (1)

R. T. Birge, “Probable values of the general physical constants,” Rev. Mod. Phys. 1, 1 (1929).
[CrossRef]

1928 (1)

G. K. Burgess, “The international temperature scale,” Bur. Stand. J. Research 1, 635 (1928).
[CrossRef]

1925 (1)

Frehafer and Snow, “Tables and graphs for facilitating computations of spectral energy distributions,” Bur. Stand. Misc. Pub. No. 56 (1925); F. E. Fowle, “Radiation from a perfect (blackbody) radiator,” International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1929), Vol. V, pp. 239–241; C. Fabry, Introduction générale à la photométrie (Paris, 1927), p. 121; J. F. Skogland, “Tables of spectral energy distribution,” Bur. Stand. Misc. Pub. No. 86 (1929); Yamauti and Okamatu, “Tables of Planck’s formula of radiation,” Res. El. Lab., Tokyo, No.  395 (1936).

Birge, R. T.

R. T. Birge, “Probable values of the general physical constants,” Rev. Mod. Phys. 1, 1 (1929).
[CrossRef]

R. T. Birge, “The general physical constants,” Reports on Progress in Physics8, 90 (1942).
[CrossRef]

Burgess, G. K.

G. K. Burgess, “The international temperature scale,” Bur. Stand. J. Research 1, 635 (1928).
[CrossRef]

Frehafer,

Frehafer and Snow, “Tables and graphs for facilitating computations of spectral energy distributions,” Bur. Stand. Misc. Pub. No. 56 (1925); F. E. Fowle, “Radiation from a perfect (blackbody) radiator,” International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1929), Vol. V, pp. 239–241; C. Fabry, Introduction générale à la photométrie (Paris, 1927), p. 121; J. F. Skogland, “Tables of spectral energy distribution,” Bur. Stand. Misc. Pub. No. 86 (1929); Yamauti and Okamatu, “Tables of Planck’s formula of radiation,” Res. El. Lab., Tokyo, No.  395 (1936).

Harding, H. G. W.

H. G. W. Harding, “Colors of total radiators expressed on the C.I.E. trichromatic system,” Phys. Soc. Proc. (London) 58, 1 (1946).
[CrossRef]

Moon, Parry

Parry Moon, “A table of Planck’s function from 3500 to 8000°K,” J. Math. Phys. 16, 133 (1937); Massachusetts Institute of Technology, Elec. Eng. Dept., Contribution No. 131, 1938.

Parry Moon, A Table of Planck’s Function 2000 to 3500°K (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1947).

Snow,

Frehafer and Snow, “Tables and graphs for facilitating computations of spectral energy distributions,” Bur. Stand. Misc. Pub. No. 56 (1925); F. E. Fowle, “Radiation from a perfect (blackbody) radiator,” International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1929), Vol. V, pp. 239–241; C. Fabry, Introduction générale à la photométrie (Paris, 1927), p. 121; J. F. Skogland, “Tables of spectral energy distribution,” Bur. Stand. Misc. Pub. No. 86 (1929); Yamauti and Okamatu, “Tables of Planck’s formula of radiation,” Res. El. Lab., Tokyo, No.  395 (1936).

Wensel, H. T.

H. T. Wensel, “The international temperature scale and some related physical constants,” Bur. Stands. J. Research 22, 375 (1939).
[CrossRef]

Bur. Stand. J. Research (1)

G. K. Burgess, “The international temperature scale,” Bur. Stand. J. Research 1, 635 (1928).
[CrossRef]

Bur. Stand. Misc. Pub. No. 56 (1)

Frehafer and Snow, “Tables and graphs for facilitating computations of spectral energy distributions,” Bur. Stand. Misc. Pub. No. 56 (1925); F. E. Fowle, “Radiation from a perfect (blackbody) radiator,” International Critical Tables (McGraw-Hill Book Company, Inc., New York, 1929), Vol. V, pp. 239–241; C. Fabry, Introduction générale à la photométrie (Paris, 1927), p. 121; J. F. Skogland, “Tables of spectral energy distribution,” Bur. Stand. Misc. Pub. No. 86 (1929); Yamauti and Okamatu, “Tables of Planck’s formula of radiation,” Res. El. Lab., Tokyo, No.  395 (1936).

Bur. Stands. J. Research (1)

H. T. Wensel, “The international temperature scale and some related physical constants,” Bur. Stands. J. Research 22, 375 (1939).
[CrossRef]

J. Math. Phys. (1)

Parry Moon, “A table of Planck’s function from 3500 to 8000°K,” J. Math. Phys. 16, 133 (1937); Massachusetts Institute of Technology, Elec. Eng. Dept., Contribution No. 131, 1938.

J. Opt. Soc. Am. (1)

Phys. Soc. Proc. (London) (1)

H. G. W. Harding, “Colors of total radiators expressed on the C.I.E. trichromatic system,” Phys. Soc. Proc. (London) 58, 1 (1946).
[CrossRef]

Rev. Mod. Phys. (1)

R. T. Birge, “Probable values of the general physical constants,” Rev. Mod. Phys. 1, 1 (1929).
[CrossRef]

Other (4)

Used also in the previous table (reference 2) and in other works. See, for instance, Scientific Basis of Illuminating Engineering (McGraw-Hill Book Company, Inc., New York, 1936); Lighting Design (Addison-Wesley Press, Cambridge, Massachusetts, 1938).

Commission Internationale de l’Éclairage, Compte rendu des séances (Cambridge University Press, Teddington, England, 1932), p. 19.

R. T. Birge, “The general physical constants,” Reports on Progress in Physics8, 90 (1942).
[CrossRef]

Parry Moon, A Table of Planck’s Function 2000 to 3500°K (Massachusetts Institute of Technology, Cambridge, Massachusetts, 1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table I Values of constants in Planck’s equation.

Tables Icon

Table II J(λ) in watt cm−2 micron−1.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J ( λ ) = C 1 λ 5 1 exp ( C 2 / λ T ) - 1 ,
T ¯ = T ( C ¯ 2 / 14320 ) .
J ¯ ( λ ) = J ( λ ) ( C ¯ 1 / C 1 ) ,