Abstract

No abstract available.

Full Article  |  PDF Article

Corrections

Loyd A. Jones and H. R. Condit, "Errata: Sunlight and Skylight as Determinants of Photographic Exposure. I. Luminous Density as Determined by Solar Altitude and Atmospheric Conditions," J. Opt. Soc. Am. 39, 135-135 (1949)
https://www.osapublishing.org/josa/abstract.cfm?uri=josa-39-2-135

References

  • View by:
  • |
  • |
  • |

  1. W. F. Berg, “Exposure tables,” Phot. J. 82, 107 (1942).
  2. P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill Book Co., Inc., New York, 1936), p. 374.
  3. P. Moon, “Proposed standard solar-radiation curves for engineering use,” J. Frank. Inst. 230, 583 (1940).
    [CrossRef]
  4. Committee on Colorimetry, “Colorimetry: preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am.27, 207 (1937).
    [CrossRef]
  5. Committee on Colorimetry, “The psychophysics of color,” J. Opt. Soc. Am. 34, 245 (1944).
  6. P. G. Nutting, “On brightness and contrast in optical images,” Astrophys. J. 40, 33 (1914).
    [CrossRef]
  7. G. W. Moffitt, “A method for determining the photographic absorption of lenses,” J. Opt. Soc. Am. 4, 83 (1920).
    [CrossRef]
  8. A. C. Hardy and F. H. Perrin, The Principles of Optics (McGraw-Hill Book Co., Inc., New York, 1932), p. 409; A. C. Hardy, “The distribution of light in optical systems,” J. Frank. Inst. 208, 773 (1929).
    [CrossRef]
  9. W. N. Goodwin, “The photronic photographic exposure meter,” J. Soc. Mot. Pict. Eng. 20, 95 (1933).
  10. L. A. Jones and H. R. Condit, “The brightness scale of exterior scenes and the computation of correct photographic exposure,” J. Opt. Soc. Am. 31, 651 (1941).
    [CrossRef]
  11. L. A. Jones, “The evaluation of negative film speeds in terms of print quality,” J. Frank. Inst. 227, 297, 497 (1939).
    [CrossRef]
  12. L. A. Jones and C. N. Nelson, “A study of various sensitometric criteria of negative film speeds,” J. Opt. Soc. Am. 30, 93 (1940).
    [CrossRef]
  13. H. H. Kimball, “Variations in the total and luminous solar radiation with geographical position in the United States,” Monthly Weather Rev. 47, 769 (1919).
    [CrossRef]
  14. S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad. 8, 342 (1881).
  15. C. G. Abbot, “Solar radiation and weather studies,” Smithsonian Misc. Coll. 94, 12, No. 10 (1935).
  16. Smithsonian Inst. Annals of Astrophys. Observ. 3, 134 (1913).
  17. C. G. Abbot and L. B. Aldrich, “The standard scale of solar radiation,” Smithsonian Misc. Coll. 92, No. 13 (1934).
  18. C. Tingwaldt, “Ein neues Pyrheliometer für Absolutmessungen,” Zeits. f. Instrumentenk. 51, 593 (1931); A. Unsöld, Physik der Sternatmosphären (J. Springer, Berlin, 1938), p. 27.
  19. I. Wilsing, “Über die Helligkeitsverteilung im Sonnenspektrum nach bolometrischen Messungen,” Pub. Astrophys. Observ. Potsdam 32, 91, 92, No. 72 (1917).
  20. C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).
  21. E. Pettit, “Measurements of ultraviolet solar radiation,” Astiophys. J. 75, 185 (1932).
    [CrossRef]
  22. C. Fabry and H. Buisson, “A study of the ultraviolet end of the solar spectrum,” Astrophys. J. 54, 297 (1921).
    [CrossRef]
  23. P. Moon, “Tables of Planck’s function from 3500 to 8000°K,” J. Math. and Phys. 16, 133 (1937).
  24. F. E. Fowle, “The atmospheric scattering of light,” Smithsonian Misc. Coll. 69, No. 3 (1918).
  25. F. E. Fowle, “Avogadro’s constant and atmospheric transparency,” Astrophys. J. 40, 435 (1914).
    [CrossRef]
  26. Smithsonian Inst. Annals of Astrophys. Obs. 2, 113 (1908).
  27. I. F. Hand, “Review of United States Weather Bureau solar radiation investigations,” Monthly Weather Rev. 65, 415 (1937).
    [CrossRef]
  28. O. R. Wulf, “The determination of ozone by spectrobolometric measurements,” Smithsonian Misc. Coll. 85, 9, No. 9 (1931).
  29. A. Läuchli, “Zur Absorption der ultravioletten Strahlung in Ozon,” Zeits. f. Physik 53, 92 (1929).
    [CrossRef]
  30. C. Fabry and H. Buisson, “L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire,” J. de Physique 3, 196 (1913); F. E. Fowle, “Atmospheric ozone,” Smithsonian Misc. Coll. 81, No. 11 (1929); R. W. Ladenburg, “Light absorption and distribution of atmospheric ozone,” J. Opt. Soc. Am. 25, 259 (1935).
    [CrossRef]
  31. Smithsonian Inst., Annals of Astrophys. Obs. 3, 136 (1913).
  32. F. E. Fowle, “The transparency of aqueous vapor,” Astrophys. J. 42, 397, Fig. 2 (1915).
  33. F. E. Fowle, “Water-vapor transparency to low-temperature radiation,” Smithsonian Misc. Coll. 68, 23, No. 8, Fig. 7 (1917).
  34. C. G. Abbot and H. B. Freeman, “Absorption lines of the infrared solar spectrum,” Smithsonian Misc. Coll. 82, No. 1 (1929).
  35. A. Benporad, Mitt. der Sternwarte Heidelberg, Nr.  4 (1904); Meteorol. Zeits. 24, 309 (1907).
  36. W. Kunerth and R. D. Miller, “Variations of intensities of the visible and of the ultraviolet in sunlight and in skylight,” Trans. Illum. Eng. Soc. 27, 82 (1932); “Visible and ultraviolet in the light obtained from the sun,” Trans. Am. Illum. Eng. Soc. 28, 347 (1933).
  37. E. R. Elvegård and G. Sjöstedt, “The calculation of illumination from sun and sky,” Trans. Illum. Eng. 35, 333 (1940).
  38. T. E. Aurén, “Illumination from sun and sky,” Medd. fr. Statens Met.-Hydr. Anstalt, Bd. 5, Nr. 4, Stockholm, 1930; Arkiv. for Matematik, Astronomi och Fysik, published by K. Svenska Vetenskapsakademien, Bd. 24A, Nr. 4, Stockholm, 1933.
  39. H. Lunelund, “Über die Helligkeit in Finnland,” Meteorol. Zeits. 52, 237 (1935).
  40. H. H. Kimball and I. F. Hand, “Sky brightness and daylight illumination measurements,” Monthly Weather Rev. 49, 481 (1921); Trans. Illum. Eng. Soc. 16, 255–283 (1921).
    [CrossRef]
  41. H. H. Kimball and I. F. Hand, “Daylight illumination on horizontal, vertical, and sloping surfaces,” Monthly Weather Rev. 50, 615 (1922); Trans. Illum. Eng. Soc. 18, 434 (1923).
    [CrossRef]
  42. L. A. Jones and C. N. Nelson, “The control of photographic printing by measured characteristics of the negative,” J. Opt. Soc. Am. 32, 558 (1942).
    [CrossRef]
  43. A. Gershun, “The light field,” J. Math. and Phys. 18, 51 (1939). Pub. M. I. T. Serial No. 164 (1939).
  44. L. Weber, “Die Albedo des Luftplanktons,” Ann. d. Physik 51, 427 (1916).
    [CrossRef]
  45. P. Moon, “A system of photometric concepts,” J. Opt. Soc. Am. 32, 348 (1942).
    [CrossRef]
  46. W. Arndt, “Raumhelligkeit als neuer Grundbegriff der Beleuchtungstechnik,” Licht u. Lampe, No.  7, 247 (1928); W. Arndt, “Beleuchtungsstarke oder Raumhelligkeit,” Licht u. Lampe, No.  23, 833 (1928).
  47. W. J. Humphreys, Physics of the Air (McGraw-Hill Book Co., Inc., New York, 1940), p. 285.
  48. L. V. King, “XII. On the scattering and absorption of light in gaseous media, with applications to the intensity of sky radiation,” Phil. Trans. Roy. Soc. A 212, 375 (1913).
    [CrossRef]
  49. A. Hammad and S. Chapman, “VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition,” Phil. Mag. 28, Series 7, 99 (1939).
  50. L. Silberstein, “Simplified formulae for scattered and rescattered sunlight,” J. Opt. Soc. Am. 33, 526 (1943).
    [CrossRef]
  51. R. Tousey and E. O. Hulburt, “Brightness and polarization of daylight sky at various altitudes above sea level,” J. Opt. Soc. Am. 37, 78 (1947).
    [CrossRef]
  52. G. M. Lennahan, “Summary of aerological observations obtained by means of kites, airplanes and sounding balloons in the United States,” Monthly Weather Rev. Supplement No. 38 (1938).
  53. H. H. Kimball and I. F. Hand, “Investigation of the dust content of the atmosphere,” Monthly Weather Rev. 52, 133 (1924).
    [CrossRef]

1947 (1)

1944 (1)

1943 (1)

1942 (3)

1941 (1)

1940 (3)

L. A. Jones and C. N. Nelson, “A study of various sensitometric criteria of negative film speeds,” J. Opt. Soc. Am. 30, 93 (1940).
[CrossRef]

P. Moon, “Proposed standard solar-radiation curves for engineering use,” J. Frank. Inst. 230, 583 (1940).
[CrossRef]

E. R. Elvegård and G. Sjöstedt, “The calculation of illumination from sun and sky,” Trans. Illum. Eng. 35, 333 (1940).

1939 (3)

L. A. Jones, “The evaluation of negative film speeds in terms of print quality,” J. Frank. Inst. 227, 297, 497 (1939).
[CrossRef]

A. Hammad and S. Chapman, “VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition,” Phil. Mag. 28, Series 7, 99 (1939).

A. Gershun, “The light field,” J. Math. and Phys. 18, 51 (1939). Pub. M. I. T. Serial No. 164 (1939).

1938 (1)

G. M. Lennahan, “Summary of aerological observations obtained by means of kites, airplanes and sounding balloons in the United States,” Monthly Weather Rev. Supplement No. 38 (1938).

1937 (2)

P. Moon, “Tables of Planck’s function from 3500 to 8000°K,” J. Math. and Phys. 16, 133 (1937).

I. F. Hand, “Review of United States Weather Bureau solar radiation investigations,” Monthly Weather Rev. 65, 415 (1937).
[CrossRef]

1935 (2)

C. G. Abbot, “Solar radiation and weather studies,” Smithsonian Misc. Coll. 94, 12, No. 10 (1935).

H. Lunelund, “Über die Helligkeit in Finnland,” Meteorol. Zeits. 52, 237 (1935).

1934 (1)

C. G. Abbot and L. B. Aldrich, “The standard scale of solar radiation,” Smithsonian Misc. Coll. 92, No. 13 (1934).

1933 (1)

W. N. Goodwin, “The photronic photographic exposure meter,” J. Soc. Mot. Pict. Eng. 20, 95 (1933).

1932 (2)

W. Kunerth and R. D. Miller, “Variations of intensities of the visible and of the ultraviolet in sunlight and in skylight,” Trans. Illum. Eng. Soc. 27, 82 (1932); “Visible and ultraviolet in the light obtained from the sun,” Trans. Am. Illum. Eng. Soc. 28, 347 (1933).

E. Pettit, “Measurements of ultraviolet solar radiation,” Astiophys. J. 75, 185 (1932).
[CrossRef]

1931 (2)

C. Tingwaldt, “Ein neues Pyrheliometer für Absolutmessungen,” Zeits. f. Instrumentenk. 51, 593 (1931); A. Unsöld, Physik der Sternatmosphären (J. Springer, Berlin, 1938), p. 27.

O. R. Wulf, “The determination of ozone by spectrobolometric measurements,” Smithsonian Misc. Coll. 85, 9, No. 9 (1931).

1929 (2)

A. Läuchli, “Zur Absorption der ultravioletten Strahlung in Ozon,” Zeits. f. Physik 53, 92 (1929).
[CrossRef]

C. G. Abbot and H. B. Freeman, “Absorption lines of the infrared solar spectrum,” Smithsonian Misc. Coll. 82, No. 1 (1929).

1928 (1)

W. Arndt, “Raumhelligkeit als neuer Grundbegriff der Beleuchtungstechnik,” Licht u. Lampe, No.  7, 247 (1928); W. Arndt, “Beleuchtungsstarke oder Raumhelligkeit,” Licht u. Lampe, No.  23, 833 (1928).

1924 (1)

H. H. Kimball and I. F. Hand, “Investigation of the dust content of the atmosphere,” Monthly Weather Rev. 52, 133 (1924).
[CrossRef]

1923 (1)

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).

1922 (1)

H. H. Kimball and I. F. Hand, “Daylight illumination on horizontal, vertical, and sloping surfaces,” Monthly Weather Rev. 50, 615 (1922); Trans. Illum. Eng. Soc. 18, 434 (1923).
[CrossRef]

1921 (2)

H. H. Kimball and I. F. Hand, “Sky brightness and daylight illumination measurements,” Monthly Weather Rev. 49, 481 (1921); Trans. Illum. Eng. Soc. 16, 255–283 (1921).
[CrossRef]

C. Fabry and H. Buisson, “A study of the ultraviolet end of the solar spectrum,” Astrophys. J. 54, 297 (1921).
[CrossRef]

1920 (1)

1919 (1)

H. H. Kimball, “Variations in the total and luminous solar radiation with geographical position in the United States,” Monthly Weather Rev. 47, 769 (1919).
[CrossRef]

1918 (1)

F. E. Fowle, “The atmospheric scattering of light,” Smithsonian Misc. Coll. 69, No. 3 (1918).

1917 (2)

I. Wilsing, “Über die Helligkeitsverteilung im Sonnenspektrum nach bolometrischen Messungen,” Pub. Astrophys. Observ. Potsdam 32, 91, 92, No. 72 (1917).

F. E. Fowle, “Water-vapor transparency to low-temperature radiation,” Smithsonian Misc. Coll. 68, 23, No. 8, Fig. 7 (1917).

1916 (1)

L. Weber, “Die Albedo des Luftplanktons,” Ann. d. Physik 51, 427 (1916).
[CrossRef]

1915 (1)

F. E. Fowle, “The transparency of aqueous vapor,” Astrophys. J. 42, 397, Fig. 2 (1915).

1914 (2)

P. G. Nutting, “On brightness and contrast in optical images,” Astrophys. J. 40, 33 (1914).
[CrossRef]

F. E. Fowle, “Avogadro’s constant and atmospheric transparency,” Astrophys. J. 40, 435 (1914).
[CrossRef]

1913 (4)

C. Fabry and H. Buisson, “L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire,” J. de Physique 3, 196 (1913); F. E. Fowle, “Atmospheric ozone,” Smithsonian Misc. Coll. 81, No. 11 (1929); R. W. Ladenburg, “Light absorption and distribution of atmospheric ozone,” J. Opt. Soc. Am. 25, 259 (1935).
[CrossRef]

Smithsonian Inst., Annals of Astrophys. Obs. 3, 136 (1913).

Smithsonian Inst. Annals of Astrophys. Observ. 3, 134 (1913).

L. V. King, “XII. On the scattering and absorption of light in gaseous media, with applications to the intensity of sky radiation,” Phil. Trans. Roy. Soc. A 212, 375 (1913).
[CrossRef]

1908 (1)

Smithsonian Inst. Annals of Astrophys. Obs. 2, 113 (1908).

1904 (1)

A. Benporad, Mitt. der Sternwarte Heidelberg, Nr.  4 (1904); Meteorol. Zeits. 24, 309 (1907).

1881 (1)

S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad. 8, 342 (1881).

Abbot, C. G.

C. G. Abbot, “Solar radiation and weather studies,” Smithsonian Misc. Coll. 94, 12, No. 10 (1935).

C. G. Abbot and L. B. Aldrich, “The standard scale of solar radiation,” Smithsonian Misc. Coll. 92, No. 13 (1934).

C. G. Abbot and H. B. Freeman, “Absorption lines of the infrared solar spectrum,” Smithsonian Misc. Coll. 82, No. 1 (1929).

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).

Aldrich, L. B.

C. G. Abbot and L. B. Aldrich, “The standard scale of solar radiation,” Smithsonian Misc. Coll. 92, No. 13 (1934).

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).

Arndt, W.

W. Arndt, “Raumhelligkeit als neuer Grundbegriff der Beleuchtungstechnik,” Licht u. Lampe, No.  7, 247 (1928); W. Arndt, “Beleuchtungsstarke oder Raumhelligkeit,” Licht u. Lampe, No.  23, 833 (1928).

Aurén, T. E.

T. E. Aurén, “Illumination from sun and sky,” Medd. fr. Statens Met.-Hydr. Anstalt, Bd. 5, Nr. 4, Stockholm, 1930; Arkiv. for Matematik, Astronomi och Fysik, published by K. Svenska Vetenskapsakademien, Bd. 24A, Nr. 4, Stockholm, 1933.

Benporad, A.

A. Benporad, Mitt. der Sternwarte Heidelberg, Nr.  4 (1904); Meteorol. Zeits. 24, 309 (1907).

Berg, W. F.

W. F. Berg, “Exposure tables,” Phot. J. 82, 107 (1942).

Buisson, H.

C. Fabry and H. Buisson, “A study of the ultraviolet end of the solar spectrum,” Astrophys. J. 54, 297 (1921).
[CrossRef]

C. Fabry and H. Buisson, “L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire,” J. de Physique 3, 196 (1913); F. E. Fowle, “Atmospheric ozone,” Smithsonian Misc. Coll. 81, No. 11 (1929); R. W. Ladenburg, “Light absorption and distribution of atmospheric ozone,” J. Opt. Soc. Am. 25, 259 (1935).
[CrossRef]

Chapman, S.

A. Hammad and S. Chapman, “VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition,” Phil. Mag. 28, Series 7, 99 (1939).

Condit, H. R.

Elvegård, E. R.

E. R. Elvegård and G. Sjöstedt, “The calculation of illumination from sun and sky,” Trans. Illum. Eng. 35, 333 (1940).

Fabry, C.

C. Fabry and H. Buisson, “A study of the ultraviolet end of the solar spectrum,” Astrophys. J. 54, 297 (1921).
[CrossRef]

C. Fabry and H. Buisson, “L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire,” J. de Physique 3, 196 (1913); F. E. Fowle, “Atmospheric ozone,” Smithsonian Misc. Coll. 81, No. 11 (1929); R. W. Ladenburg, “Light absorption and distribution of atmospheric ozone,” J. Opt. Soc. Am. 25, 259 (1935).
[CrossRef]

Fowle, F. E.

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).

F. E. Fowle, “The atmospheric scattering of light,” Smithsonian Misc. Coll. 69, No. 3 (1918).

F. E. Fowle, “Water-vapor transparency to low-temperature radiation,” Smithsonian Misc. Coll. 68, 23, No. 8, Fig. 7 (1917).

F. E. Fowle, “The transparency of aqueous vapor,” Astrophys. J. 42, 397, Fig. 2 (1915).

F. E. Fowle, “Avogadro’s constant and atmospheric transparency,” Astrophys. J. 40, 435 (1914).
[CrossRef]

Freeman, H. B.

C. G. Abbot and H. B. Freeman, “Absorption lines of the infrared solar spectrum,” Smithsonian Misc. Coll. 82, No. 1 (1929).

Gershun, A.

A. Gershun, “The light field,” J. Math. and Phys. 18, 51 (1939). Pub. M. I. T. Serial No. 164 (1939).

Goodwin, W. N.

W. N. Goodwin, “The photronic photographic exposure meter,” J. Soc. Mot. Pict. Eng. 20, 95 (1933).

Hammad, A.

A. Hammad and S. Chapman, “VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition,” Phil. Mag. 28, Series 7, 99 (1939).

Hand, I. F.

I. F. Hand, “Review of United States Weather Bureau solar radiation investigations,” Monthly Weather Rev. 65, 415 (1937).
[CrossRef]

H. H. Kimball and I. F. Hand, “Investigation of the dust content of the atmosphere,” Monthly Weather Rev. 52, 133 (1924).
[CrossRef]

H. H. Kimball and I. F. Hand, “Daylight illumination on horizontal, vertical, and sloping surfaces,” Monthly Weather Rev. 50, 615 (1922); Trans. Illum. Eng. Soc. 18, 434 (1923).
[CrossRef]

H. H. Kimball and I. F. Hand, “Sky brightness and daylight illumination measurements,” Monthly Weather Rev. 49, 481 (1921); Trans. Illum. Eng. Soc. 16, 255–283 (1921).
[CrossRef]

Hardy, A. C.

A. C. Hardy and F. H. Perrin, The Principles of Optics (McGraw-Hill Book Co., Inc., New York, 1932), p. 409; A. C. Hardy, “The distribution of light in optical systems,” J. Frank. Inst. 208, 773 (1929).
[CrossRef]

Hulburt, E. O.

Humphreys, W. J.

W. J. Humphreys, Physics of the Air (McGraw-Hill Book Co., Inc., New York, 1940), p. 285.

Jones, L. A.

Kimball, H. H.

H. H. Kimball and I. F. Hand, “Investigation of the dust content of the atmosphere,” Monthly Weather Rev. 52, 133 (1924).
[CrossRef]

H. H. Kimball and I. F. Hand, “Daylight illumination on horizontal, vertical, and sloping surfaces,” Monthly Weather Rev. 50, 615 (1922); Trans. Illum. Eng. Soc. 18, 434 (1923).
[CrossRef]

H. H. Kimball and I. F. Hand, “Sky brightness and daylight illumination measurements,” Monthly Weather Rev. 49, 481 (1921); Trans. Illum. Eng. Soc. 16, 255–283 (1921).
[CrossRef]

H. H. Kimball, “Variations in the total and luminous solar radiation with geographical position in the United States,” Monthly Weather Rev. 47, 769 (1919).
[CrossRef]

King, L. V.

L. V. King, “XII. On the scattering and absorption of light in gaseous media, with applications to the intensity of sky radiation,” Phil. Trans. Roy. Soc. A 212, 375 (1913).
[CrossRef]

Kunerth, W.

W. Kunerth and R. D. Miller, “Variations of intensities of the visible and of the ultraviolet in sunlight and in skylight,” Trans. Illum. Eng. Soc. 27, 82 (1932); “Visible and ultraviolet in the light obtained from the sun,” Trans. Am. Illum. Eng. Soc. 28, 347 (1933).

Langley, S. P.

S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad. 8, 342 (1881).

Läuchli, A.

A. Läuchli, “Zur Absorption der ultravioletten Strahlung in Ozon,” Zeits. f. Physik 53, 92 (1929).
[CrossRef]

Lennahan, G. M.

G. M. Lennahan, “Summary of aerological observations obtained by means of kites, airplanes and sounding balloons in the United States,” Monthly Weather Rev. Supplement No. 38 (1938).

Lunelund, H.

H. Lunelund, “Über die Helligkeit in Finnland,” Meteorol. Zeits. 52, 237 (1935).

Miller, R. D.

W. Kunerth and R. D. Miller, “Variations of intensities of the visible and of the ultraviolet in sunlight and in skylight,” Trans. Illum. Eng. Soc. 27, 82 (1932); “Visible and ultraviolet in the light obtained from the sun,” Trans. Am. Illum. Eng. Soc. 28, 347 (1933).

Moffitt, G. W.

Moon, P.

P. Moon, “A system of photometric concepts,” J. Opt. Soc. Am. 32, 348 (1942).
[CrossRef]

P. Moon, “Proposed standard solar-radiation curves for engineering use,” J. Frank. Inst. 230, 583 (1940).
[CrossRef]

P. Moon, “Tables of Planck’s function from 3500 to 8000°K,” J. Math. and Phys. 16, 133 (1937).

P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill Book Co., Inc., New York, 1936), p. 374.

Nelson, C. N.

Nutting, P. G.

P. G. Nutting, “On brightness and contrast in optical images,” Astrophys. J. 40, 33 (1914).
[CrossRef]

Perrin, F. H.

A. C. Hardy and F. H. Perrin, The Principles of Optics (McGraw-Hill Book Co., Inc., New York, 1932), p. 409; A. C. Hardy, “The distribution of light in optical systems,” J. Frank. Inst. 208, 773 (1929).
[CrossRef]

Pettit, E.

E. Pettit, “Measurements of ultraviolet solar radiation,” Astiophys. J. 75, 185 (1932).
[CrossRef]

Silberstein, L.

Sjöstedt, G.

E. R. Elvegård and G. Sjöstedt, “The calculation of illumination from sun and sky,” Trans. Illum. Eng. 35, 333 (1940).

Tingwaldt, C.

C. Tingwaldt, “Ein neues Pyrheliometer für Absolutmessungen,” Zeits. f. Instrumentenk. 51, 593 (1931); A. Unsöld, Physik der Sternatmosphären (J. Springer, Berlin, 1938), p. 27.

Tousey, R.

Weber, L.

L. Weber, “Die Albedo des Luftplanktons,” Ann. d. Physik 51, 427 (1916).
[CrossRef]

Wilsing, I.

I. Wilsing, “Über die Helligkeitsverteilung im Sonnenspektrum nach bolometrischen Messungen,” Pub. Astrophys. Observ. Potsdam 32, 91, 92, No. 72 (1917).

Wulf, O. R.

O. R. Wulf, “The determination of ozone by spectrobolometric measurements,” Smithsonian Misc. Coll. 85, 9, No. 9 (1931).

Ann. d. Physik (1)

L. Weber, “Die Albedo des Luftplanktons,” Ann. d. Physik 51, 427 (1916).
[CrossRef]

Annals of Astrophys. Obs. (1)

Smithsonian Inst., Annals of Astrophys. Obs. 3, 136 (1913).

Astiophys. J. (1)

E. Pettit, “Measurements of ultraviolet solar radiation,” Astiophys. J. 75, 185 (1932).
[CrossRef]

Astrophys. J. (4)

C. Fabry and H. Buisson, “A study of the ultraviolet end of the solar spectrum,” Astrophys. J. 54, 297 (1921).
[CrossRef]

F. E. Fowle, “The transparency of aqueous vapor,” Astrophys. J. 42, 397, Fig. 2 (1915).

F. E. Fowle, “Avogadro’s constant and atmospheric transparency,” Astrophys. J. 40, 435 (1914).
[CrossRef]

P. G. Nutting, “On brightness and contrast in optical images,” Astrophys. J. 40, 33 (1914).
[CrossRef]

J. de Physique (1)

C. Fabry and H. Buisson, “L’absorption de l’ultraviolet par l’ozone et la limite du spectre solaire,” J. de Physique 3, 196 (1913); F. E. Fowle, “Atmospheric ozone,” Smithsonian Misc. Coll. 81, No. 11 (1929); R. W. Ladenburg, “Light absorption and distribution of atmospheric ozone,” J. Opt. Soc. Am. 25, 259 (1935).
[CrossRef]

J. Frank. Inst. (2)

P. Moon, “Proposed standard solar-radiation curves for engineering use,” J. Frank. Inst. 230, 583 (1940).
[CrossRef]

L. A. Jones, “The evaluation of negative film speeds in terms of print quality,” J. Frank. Inst. 227, 297, 497 (1939).
[CrossRef]

J. Math. and Phys. (2)

A. Gershun, “The light field,” J. Math. and Phys. 18, 51 (1939). Pub. M. I. T. Serial No. 164 (1939).

P. Moon, “Tables of Planck’s function from 3500 to 8000°K,” J. Math. and Phys. 16, 133 (1937).

J. Opt. Soc. Am. (8)

J. Soc. Mot. Pict. Eng. (1)

W. N. Goodwin, “The photronic photographic exposure meter,” J. Soc. Mot. Pict. Eng. 20, 95 (1933).

Licht u. Lampe (1)

W. Arndt, “Raumhelligkeit als neuer Grundbegriff der Beleuchtungstechnik,” Licht u. Lampe, No.  7, 247 (1928); W. Arndt, “Beleuchtungsstarke oder Raumhelligkeit,” Licht u. Lampe, No.  23, 833 (1928).

Meteorol. Zeits. (1)

H. Lunelund, “Über die Helligkeit in Finnland,” Meteorol. Zeits. 52, 237 (1935).

Mitt. der Sternwarte Heidelberg (1)

A. Benporad, Mitt. der Sternwarte Heidelberg, Nr.  4 (1904); Meteorol. Zeits. 24, 309 (1907).

Monthly Weather Rev. (5)

I. F. Hand, “Review of United States Weather Bureau solar radiation investigations,” Monthly Weather Rev. 65, 415 (1937).
[CrossRef]

H. H. Kimball and I. F. Hand, “Sky brightness and daylight illumination measurements,” Monthly Weather Rev. 49, 481 (1921); Trans. Illum. Eng. Soc. 16, 255–283 (1921).
[CrossRef]

H. H. Kimball and I. F. Hand, “Daylight illumination on horizontal, vertical, and sloping surfaces,” Monthly Weather Rev. 50, 615 (1922); Trans. Illum. Eng. Soc. 18, 434 (1923).
[CrossRef]

H. H. Kimball, “Variations in the total and luminous solar radiation with geographical position in the United States,” Monthly Weather Rev. 47, 769 (1919).
[CrossRef]

H. H. Kimball and I. F. Hand, “Investigation of the dust content of the atmosphere,” Monthly Weather Rev. 52, 133 (1924).
[CrossRef]

Monthly Weather Rev. Supplement No. 38 (1)

G. M. Lennahan, “Summary of aerological observations obtained by means of kites, airplanes and sounding balloons in the United States,” Monthly Weather Rev. Supplement No. 38 (1938).

Phil. Mag. (1)

A. Hammad and S. Chapman, “VII. The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition,” Phil. Mag. 28, Series 7, 99 (1939).

Phil. Trans. Roy. Soc. A (1)

L. V. King, “XII. On the scattering and absorption of light in gaseous media, with applications to the intensity of sky radiation,” Phil. Trans. Roy. Soc. A 212, 375 (1913).
[CrossRef]

Phot. J. (1)

W. F. Berg, “Exposure tables,” Phot. J. 82, 107 (1942).

Proc. Am. Acad. (1)

S. P. Langley, “The bolometer and radiant energy,” Proc. Am. Acad. 8, 342 (1881).

Pub. Astrophys. Observ. Potsdam (1)

I. Wilsing, “Über die Helligkeitsverteilung im Sonnenspektrum nach bolometrischen Messungen,” Pub. Astrophys. Observ. Potsdam 32, 91, 92, No. 72 (1917).

Smithsonian Inst. Annals of Astrophys. Obs. (1)

Smithsonian Inst. Annals of Astrophys. Obs. 2, 113 (1908).

Smithsonian Inst. Annals of Astrophys. Observ. (1)

Smithsonian Inst. Annals of Astrophys. Observ. 3, 134 (1913).

Smithsonian Misc. Coll. (7)

C. G. Abbot and L. B. Aldrich, “The standard scale of solar radiation,” Smithsonian Misc. Coll. 92, No. 13 (1934).

C. G. Abbot, “Solar radiation and weather studies,” Smithsonian Misc. Coll. 94, 12, No. 10 (1935).

F. E. Fowle, “The atmospheric scattering of light,” Smithsonian Misc. Coll. 69, No. 3 (1918).

C. G. Abbot, F. E. Fowle, and L. B. Aldrich, “The distribution of energy in the spectra of the sun and stars,” Smithsonian Misc. Coll. 74, 15, No. 7 (1923).

F. E. Fowle, “Water-vapor transparency to low-temperature radiation,” Smithsonian Misc. Coll. 68, 23, No. 8, Fig. 7 (1917).

C. G. Abbot and H. B. Freeman, “Absorption lines of the infrared solar spectrum,” Smithsonian Misc. Coll. 82, No. 1 (1929).

O. R. Wulf, “The determination of ozone by spectrobolometric measurements,” Smithsonian Misc. Coll. 85, 9, No. 9 (1931).

Trans. Illum. Eng. (1)

E. R. Elvegård and G. Sjöstedt, “The calculation of illumination from sun and sky,” Trans. Illum. Eng. 35, 333 (1940).

Trans. Illum. Eng. Soc. (1)

W. Kunerth and R. D. Miller, “Variations of intensities of the visible and of the ultraviolet in sunlight and in skylight,” Trans. Illum. Eng. Soc. 27, 82 (1932); “Visible and ultraviolet in the light obtained from the sun,” Trans. Am. Illum. Eng. Soc. 28, 347 (1933).

Zeits. f. Instrumentenk. (1)

C. Tingwaldt, “Ein neues Pyrheliometer für Absolutmessungen,” Zeits. f. Instrumentenk. 51, 593 (1931); A. Unsöld, Physik der Sternatmosphären (J. Springer, Berlin, 1938), p. 27.

Zeits. f. Physik (1)

A. Läuchli, “Zur Absorption der ultravioletten Strahlung in Ozon,” Zeits. f. Physik 53, 92 (1929).
[CrossRef]

Other (5)

P. Moon, The Scientific Basis of Illuminating Engineering (McGraw-Hill Book Co., Inc., New York, 1936), p. 374.

T. E. Aurén, “Illumination from sun and sky,” Medd. fr. Statens Met.-Hydr. Anstalt, Bd. 5, Nr. 4, Stockholm, 1930; Arkiv. for Matematik, Astronomi och Fysik, published by K. Svenska Vetenskapsakademien, Bd. 24A, Nr. 4, Stockholm, 1933.

Committee on Colorimetry, “Colorimetry: preliminary draft of a report on nomenclature and definitions,” J. Opt. Soc. Am.27, 207 (1937).
[CrossRef]

A. C. Hardy and F. H. Perrin, The Principles of Optics (McGraw-Hill Book Co., Inc., New York, 1932), p. 409; A. C. Hardy, “The distribution of light in optical systems,” J. Frank. Inst. 208, 773 (1929).
[CrossRef]

W. J. Humphreys, Physics of the Air (McGraw-Hill Book Co., Inc., New York, 1940), p. 285.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Evaluation of flare factor, FF. Curve 1, the characteristic of the negative material, Dx=f(logEx). Curve 2, the characteristic of the negative, Dn=f(logBo).

Fig. 2
Fig. 2

Graphic representation of the fractional gradient criterion.

Fig. 3
Fig. 3

Relative solar irradiance on a plane normal to the sun’s rays outside the earth’s atmosphere (from Moon, ref. 3, Fig. 1).

Fig. 4
Fig. 4

Proposed standard solar irradiance curve (watts/m2/μ), on a plane normal to the sun’s rays, outside the earth’s atmosphere and at the mean solar distance (from Moon ref. 3, Fig. 2).

Fig. 5
Fig. 5

Proposed standard solar irradiance curves (watts/m2/μ), on a plane normal to the sun’s rays, outside the earth’s atmosphere (m=0) and at the earth’s surface for air masses of 1, 2, 3, 4, and 5. (Moon, ref. 3, Fig. 10.) Conditions: atmospheric pressure=760 mm, precipitable water=20 mm, dust=300 particles/cm3, ozone=2.8 mm.

Fig. 6
Fig. 6

Direct solar illuminance (lumens/m2) at the earth’s surface on a plane normal to the sun’s rays. (From Moon, ref. 3, Fig. 15.) The straight solid and extrapolated clashed curve computed by Moon from Fig. 5. Kimball’s directly determined experimental values are represented by the plotted points { ○  May ×  April □  June.

Fig. 7
Fig. 7

Illuminance (foot-candles) due to direct sunlight on the horizontal plane, at the earth’s surface, plotted as a function of solar altitude.

Fig. 8
Fig. 8

Illuminance (foot-candles) due to direct sunlight on the horizontal plane plotted as a function of solar altitude. Solid curves for Washington, D. C., dashed curves for Lincoln, Nebr. Curve A “illumination equivalents” (foot-candles, right-hand ordinate) of 1 gram calorie per minute per cm2 of solar radiation.

Fig. 9
Fig. 9

Diagram illustrating the method of converting values of sky luminance (foot-lamberts) to illuminance (foot-candles) on the plane P.

Fig. 10
Fig. 10

Illuminance (foot-candles) on the horizontal plane due to light from the clear sky as a function of solar altitude.

Fig. 11
Fig. 11

Illuminance (foot-candles) on the horizontal plane due to light from the clear sky as a function of solar altitude.

Fig. 12
Fig. 12

Diagram illustrating the relationship between three possible methods of evaluating the illuminance attributable to sunlight and skylight. These include: (a) the illuminance on the normal (N) plane; (b) the illuminance on the horizontal (H) plane; and (c) the illuminance on the perpendicular (P) plane.

Fig. 13
Fig. 13

Illuminance (foot-candles) due to sunlight (on the normal, horizontal, and perpendicular planes) as a function of solar altitude; and luminous density (foot-lumergs) due to sunlight as a function of solar altitude.

Fig. 14
Fig. 14

Illuminance (foot-candles) due to skylight (on the normal, horizontal, and perpendicular planes) as a function of solar altitude; and luminous density (foot-lumergs) due to skylight as a function of solar altitude.

Fig. 15
Fig. 15

Illuminance due to sunlight plus skylight (on the normal, horizontal, and vertical planes) as a function of solar altitude; luminous density (foot-lumergs) due to sunlight plus skylight as a function of solar altitude.

Fig. 16
Fig. 16

Curves showing the consequences of using the actual values of flare factor (FF) for various scenes (if known) in the computation of camera exposure, CE, by use of Eq. (20a).

Fig. 17
Fig. 17

Curves showing the consequences of using a constant value of flare factor (FF=2.0) in the computation of camera exposure, CE, by use of Eq. (20a).

Fig. 18
Fig. 18

Luminous density, V (foot-lumergs) for clear sky conditions as a function of solar altitude. Vd is for direct sunlight; Vs is for skylight.

Fig. 19
Fig. 19

Curves showing the dependence of required camera exposure (relative) upon hour angle as determined by different methods of evaluating the total available light.

Fig. 20
Fig. 20

A: Curves showing the dependence of required camera exposure (relative) upon latitude for various methods of evaluating the total available light. B: Curves showing the dependence of required camera exposure (relative) upon month for various methods of evaluating the total available light.

Fig. 21
Fig. 21

Diagram illustrating the relation between air mass and solar altitude.

Fig. 22
Fig. 22

Qualitative representative of the intensity and distribution of sunlight after passing through the cloud zone containing various amounts of condensed water vapor.

Fig. 23
Fig. 23

Pictorial representation of four atmospheric conditions:

Tables (14)

Tables Icon

Table I Radiometric and photometric terminology.

Tables Icon

Table II Luminance of the clear sky, winter and summer values.

Tables Icon

Table III Luminance of the clear sky, average of winter and summer values.

Tables Icon

Table IV Illuminance due to direct sunlight, skylight, and total on horizontal and vertical planes.

Tables Icon

Table V Data (from Fig. 16) illustrating the consequences of introducing a variable flare factor into Eq. (20a).

Tables Icon

Table VI Data (from Fig. 17) illustrating the consequences of using a fixed flare factor (FF=4.0) when photographing scenes in which the flare factor is variable.

Tables Icon

Table VII Values of illuminance (foot candles) on the normal plane and of luminous density (lumerg/cu. ft.) attributable to direct sunlight, skylight, and the total.

Tables Icon

Table VIII Specification of the latitude bands for which the variations of solar altitude with hours of the day and month are computed.

Tables Icon

Table IX Solar altitude at various hours and months at latitude 40°N.

Tables Icon

Table X Luminous densities at latitude 40°N.

Tables Icon

Table XI Consecutive whole numbers, column 3, which represent all values of light index, Lv, between the limits as shown in the first column and the corresponding values of luminous density, Column 4.

Tables Icon

Table XII Light indices for various latitudes, local solar time.

Tables Icon

Table XIII Numerical values which characterize the atmospheric conditions indicated in Column 1.

Tables Icon

Table XIV Atmospheric index, A, for various atmospheric conditions.

Equations (51)

Equations on this page are rendered with MathJax. Learn more.

Exposure ( E ) = I · t .
I i t = I i o + I i f .
I i o = B o · ( F 2 / 4 v 2 f 2 ) · cos 4 θ · H · T g · 10.76 ,
I i 0 = ( B o / f 2 ) · K ,
K = ( F 2 / 4 v 2 ) · cos 4 θ · H · T g · 10.76 ,
I i t = ( B o / f 2 ) · K + I i f .
E k = ( B o · K f 2 + I i f ) · t ,
D n = f ( log I i t ) .
I S i t = I i t max / I i t min.
B S o = B o max / B o min.
F F = B S o / I S i t .
Δ B = ( E k min · B o max ) - ( E k max · B o min ) E k max - E k min .
I i f = ( Δ B / f 2 ) · K .
I i t = [ ( B o + Δ B ) / f 2 ] · K .
E k = B o + Δ B f 2 · K · t .
log B o max + Δ B B o max .
log B o min + Δ B B o min .
log F F = log B o min + Δ B B o min - log B o max + A B B o max .
log B o max + A B B o max .
log B o min + Δ B B o min .
log F F = log B o min + Δ B B o min .
Δ B = B o min ( F F - 1 ) .
I i t = B o + B o min ( F F - 1 ) f 2 · K .
E k = B o + B o min ( F F - 1 ) f 2 · K t .
I i t min = B o min · F F f 2 · K
E k min = B o min · F F f 2 · K t .
t / f 2 = E k / ( B o + Δ B ) · K .
Camera exposure = t / f 2 .
t / f 2 = E a ( B o + Δ B ) · K ,
Speed ( S ) = 1 / E 0.3 G ¯ .
t = f 2 / B o min · F F · K · S ,
t / f 2 = 1 / B o min · F F · K · S .
m = atm. refr. in seconds 58.36 · sin z ,
I h = I n · sin h ,
I s = ω B s π cos α .
I s = ω 1 · ( B s 1 / π ) cos α 1 + ω 2 ( B s 2 / π ) cos α 2 + ω n ( B s n / π ) cos α n .
t / f 2 = 1 / B o min · F F · K · S .
K n = G m / G ¯ n K n = 0.05 / 0.44 = 0.11.
t / f 2 = 1 / 4 B o min · K · S .
D n = f ( log B o ) ,
t / f 2 = max B S o / 4 B o max · K · S .
R s = B o ( M ) B o     min , R h = B o max B o ( M ) .
log E x = log E 0.3 G ¯ + ( log R s max - 0.60 ) = log E 0.3 G ¯ + 1.7.
t / f 2 = R s max / 4 B o ( M ) · K · S .
log E x = log E 0.3 G ¯ + 1.7 + 1.2 = log E 0.3 G ¯ + 2.9.
V = d Q / d v .
V s = ( ω 1 B s 1 π + ω 2 B s 2 π + ω n B s n π ) · 0.01017 ,
sin α = sin β sin γ + cos β cos γ cos hour angle ,
R v = V max / V a .
L v = 10 · log R v .
A = 10 · log R a .