Abstract

Raman spectra of two optical glasses (a borosilicate crown and a dense flint glass) have been obtained making use of unpolarized exciting light and also with parallel and perpendicular plane polarized exciting light. The chief characteristics of these spectra are that they consist essentially of continua with broad maxima in the continua. The main features of the Raman spectra of these glasses are strongly polarized. In the photograph made with parallel polarized exciting light, a very strong depolarized line only 30-cm−1 frequency shift from the exciting line makes its appearance in the spectrum of the flint glass.

An attempt has been made to find modified Brillouin components in the Rayleigh line. Photographs of λ-4047 and λ-4078 made in the third order of a 21-foot concave grating show no modified Brillouin components which are 1/100 as strong as the unmodified line.

The polarization of the Rayleigh scattering of these glasses has been investigated. The intensities of the polarized components were measured by means of photoelectric methods. Measurements made with polarized exciting light show definitely that ρh is somewhat less than unity, which definitely verifies the existence of a Krishnan effect in these glasses.

© 1948 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. James H. Hibben, The Raman Effect and its Chemical Applications (Reinhold Publishing Corporation, New York), p. 404 (1939).
  2. T. G. Kujumzelis, Zeits. f. Physik 97, 561, 100, 221 (1935).
  3. R. Norris, Proc. Ind. Acad. Sci. 14, 178 (1941).
  4. D. H. Rank and J. S. McCartney, J. Opt. Soc. Am. 38, 279 (1948).
  5. D. H. Rank, N. Sheppard, and G. J. Szasz, J. Chem. Phys. 16, 698 (1948).
  6. A. E. Douglas and D. H. Rank, J. Opt. Soc. Am. 38, 281 (1948).
  7. L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).
  8. E. Gross, Acta Physicochimica U.R.R.S. 20, 459 (1945).
  9. D. H. Rank, J. S. McCartney, and G. J. Szasz, J. Opt. Soc. Am. 38, 287 (1948).
  10. C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 322 (1942).
  11. D. H. Rank and J. A. Van Horn, J. Opt. Soc. Am. 36, 325 (1946).
  12. R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 211 (1934).
  13. A. Rousset, Comptes rendus 198, 2152 (1934).
  14. A. Rousset, Comptes rendus 199, 716 (1934).
  15. A. Rousset, thesis (Paris, 1935).
  16. R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 915 (1935).
  17. R. S. Krishnan, Proc. Ind. Acad. Sci. 3, 211 (1936).
  18. R. S. Krishnan, Proc. Ind. Acad. Sci. 6, 21 (1938).
  19. RayleighTheory of Sound (1926), Vol.  1, p. 93.
  20. H. Mueller, Proc. Roy. Soc. 166A, 425 (1938).
  21. B. Mookerjee, Ind. J. Phys. 12, 15 (1938).
  22. R. S. Krishnan, Proc. Ind. Acad. Sci. 8, 442 (1938).

1948 (4)

1946 (1)

1945 (1)

E. Gross, Acta Physicochimica U.R.R.S. 20, 459 (1945).

1942 (1)

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 322 (1942).

1941 (1)

R. Norris, Proc. Ind. Acad. Sci. 14, 178 (1941).

1938 (4)

R. S. Krishnan, Proc. Ind. Acad. Sci. 6, 21 (1938).

H. Mueller, Proc. Roy. Soc. 166A, 425 (1938).

B. Mookerjee, Ind. J. Phys. 12, 15 (1938).

R. S. Krishnan, Proc. Ind. Acad. Sci. 8, 442 (1938).

1936 (1)

R. S. Krishnan, Proc. Ind. Acad. Sci. 3, 211 (1936).

1935 (2)

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 915 (1935).

T. G. Kujumzelis, Zeits. f. Physik 97, 561, 100, 221 (1935).

1934 (4)

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 211 (1934).

A. Rousset, Comptes rendus 198, 2152 (1934).

A. Rousset, Comptes rendus 199, 716 (1934).

1926 (1)

RayleighTheory of Sound (1926), Vol.  1, p. 93.

Douglas, A. E.

Gross, E.

E. Gross, Acta Physicochimica U.R.R.S. 20, 459 (1945).

Hibben, James H.

James H. Hibben, The Raman Effect and its Chemical Applications (Reinhold Publishing Corporation, New York), p. 404 (1939).

Krishnan, R. S.

R. S. Krishnan, Proc. Ind. Acad. Sci. 6, 21 (1938).

R. S. Krishnan, Proc. Ind. Acad. Sci. 8, 442 (1938).

R. S. Krishnan, Proc. Ind. Acad. Sci. 3, 211 (1936).

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 915 (1935).

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 211 (1934).

Kujumzelis, T. G.

T. G. Kujumzelis, Zeits. f. Physik 97, 561, 100, 221 (1935).

Landau, L.

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

McCartney, J. S.

Mookerjee, B.

B. Mookerjee, Ind. J. Phys. 12, 15 (1938).

Mueller, H.

H. Mueller, Proc. Roy. Soc. 166A, 425 (1938).

Norris, R.

R. Norris, Proc. Ind. Acad. Sci. 14, 178 (1941).

Placzek, G.

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

Rank, D. H.

Rayleigh,

RayleighTheory of Sound (1926), Vol.  1, p. 93.

Rousset, A.

A. Rousset, Comptes rendus 198, 2152 (1934).

A. Rousset, Comptes rendus 199, 716 (1934).

A. Rousset, thesis (Paris, 1935).

Sheppard, N.

D. H. Rank, N. Sheppard, and G. J. Szasz, J. Chem. Phys. 16, 698 (1948).

Szasz, G. J.

D. H. Rank, N. Sheppard, and G. J. Szasz, J. Chem. Phys. 16, 698 (1948).

D. H. Rank, J. S. McCartney, and G. J. Szasz, J. Opt. Soc. Am. 38, 287 (1948).

Van Horn, J. A.

Venkateswaran, C. S.

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 322 (1942).

Acta Physicochimica U.R.R.S. (1)

E. Gross, Acta Physicochimica U.R.R.S. 20, 459 (1945).

Comptes rendus (2)

A. Rousset, Comptes rendus 198, 2152 (1934).

A. Rousset, Comptes rendus 199, 716 (1934).

Ind. J. Phys. (1)

B. Mookerjee, Ind. J. Phys. 12, 15 (1938).

J. Chem. Phys. (1)

D. H. Rank, N. Sheppard, and G. J. Szasz, J. Chem. Phys. 16, 698 (1948).

J. Opt. Soc. Am. (4)

Physik. Zeits. Sowjetunion (1)

L. Landau and G. Placzek, Physik. Zeits. Sowjetunion 5, 172 (1934).

Proc. Ind. Acad. Sci. (7)

C. S. Venkateswaran, Proc. Ind. Acad. Sci. 15, 322 (1942).

R. Norris, Proc. Ind. Acad. Sci. 14, 178 (1941).

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 211 (1934).

R. S. Krishnan, Proc. Ind. Acad. Sci. 1, 915 (1935).

R. S. Krishnan, Proc. Ind. Acad. Sci. 3, 211 (1936).

R. S. Krishnan, Proc. Ind. Acad. Sci. 6, 21 (1938).

R. S. Krishnan, Proc. Ind. Acad. Sci. 8, 442 (1938).

Proc. Roy. Soc. (1)

H. Mueller, Proc. Roy. Soc. 166A, 425 (1938).

Theory of Sound (1)

RayleighTheory of Sound (1926), Vol.  1, p. 93.

Zeits. f. Physik (1)

T. G. Kujumzelis, Zeits. f. Physik 97, 561, 100, 221 (1935).

Other (2)

James H. Hibben, The Raman Effect and its Chemical Applications (Reinhold Publishing Corporation, New York), p. 404 (1939).

A. Rousset, thesis (Paris, 1935).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Microphotometer curves of Raman spectrum of optical glass obtained by excitation with polarized exciting light. (A) Raman spectrum of DF-3 glass excited by ⊥-polarized exciting light; (B) identical to A excited by ||-polarized light; (C) Raman spectrum of BSC-2 glass excited with ⊥-polarized exciting light. The arrow in curve B denotes the exciting line Hg 4358 angstroms.

Fig. 2
Fig. 2

Schematic diagram of apparatus used to measure depolarization factors of optical glasses. A-automobile headlight bulb, B and G-condensing lenses, C, C′, and F-aperture stops, K-light trap, D and D′-polaroids mounted on divided circles, H-multiplier photo-tube.

Tables (2)

Tables Icon

Table I Frequency shifts and polarization characteristics of the Raman spectrum of two glasses. V. S.—very strong, Dep.—depolarized, Pol.—polarized, S.—strong, W.—weak, Lim.—limit, M.—medium, Sh.—sharp.

Tables Icon

Table II Depolarization factors for optical glasses; u-refractive index.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ ν = ± 2 ν ( v / c ) u sin ( θ / 2 ) ,
I c / 2 I B = γ - 1 ,
ρ u = ( 1 + 1 / ρ h ) ( 1 + 1 / ρ v ) .