Abstract

The problems involved in the development of ultraviolet transmission filters are discussed and criteria of stability, efficiency, and ease of preparation are applied to the materials suggested by previous workers. By the selection of the most suitable previous filters and the introduction of several new filters, a set of band pass filters for the 2400–3800A region of the ultraviolet is developed. These have a half-width of 200A and a maximum transmission of 30 percent, on the average. Quantitative spectrophotometric data are given for all components and filter combinations used. Suggestions are made for the further development of these tools.

© 1948 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. L. J. Bäckström, Naturwiss. 21, 251 (1933).
    [Crossref]
  2. H. Alterthum and M. Reger, Chem. Fabrik 6, 283 (1933); cf. R. Rompe, Acta Phys. Polonica 5, 151 (1936).
  3. E. J. Bowen, J. Chem. Soc.76 (1935). Cf. Proc. Roy. Soc. A154, 349 (1936). See also, E. J. Bowen, The Chemical Aspects of Light, 2nd Ed. (Clarendon Press, Oxford, 1946). Appendices II and III.
    [Crossref]
  4. K. S. Gibson, “Spectral filters,” International Critical Tables, Vol.  5, p. 271 (1929).
  5. Chr. Winther, Zeits. f. Elektrochemie 43, 691 (1937).
  6. R. W. Wood, Phil. Mag. 5, 257 (1903).
    [Crossref]
  7. Cf. Fig. 1, T. Dreisch and W. Trommer, Zeits. f. physik. Chemie B37, 37 (1937).
  8. Glass Color Filters (Corning Glass Works, Corning, New York, 1948), New Edition.
  9. Glass Color Filters (Corning Glass Works, Corning, New York, 1942) (Old Edition, Form C-247-4-42).
  10. Cation X, named 2,7-dimethyl-3,6-diazacyclohepta-1,6-diene iodide. G. Schwarzenbach and K. Lutz, Helv. Chim. Acta 23, 1139 (1940). The authors give directions for preparation of the perchlorate; the iodide was used in our work.
    [Crossref]
  11. In our use of the filter, little measurable change in transmission occurred upon prolonged exposure to the high pressure quartz mercury arc (the light first being passed through nickel sulfate and red purple corex).
  12. Landolt-Börnstein, Physikalisch-Chemische Tabellen (Julius Springer, Berlin, 1935). Curve 141, p. 1379, Volume 111b.
  13. R. E. Hunt and W. Davis, J. Am. Chem. Soc. 69, 1415 (1947).
    [Crossref]

1947 (1)

R. E. Hunt and W. Davis, J. Am. Chem. Soc. 69, 1415 (1947).
[Crossref]

1940 (1)

Cation X, named 2,7-dimethyl-3,6-diazacyclohepta-1,6-diene iodide. G. Schwarzenbach and K. Lutz, Helv. Chim. Acta 23, 1139 (1940). The authors give directions for preparation of the perchlorate; the iodide was used in our work.
[Crossref]

1937 (2)

Cf. Fig. 1, T. Dreisch and W. Trommer, Zeits. f. physik. Chemie B37, 37 (1937).

Chr. Winther, Zeits. f. Elektrochemie 43, 691 (1937).

1935 (1)

E. J. Bowen, J. Chem. Soc.76 (1935). Cf. Proc. Roy. Soc. A154, 349 (1936). See also, E. J. Bowen, The Chemical Aspects of Light, 2nd Ed. (Clarendon Press, Oxford, 1946). Appendices II and III.
[Crossref]

1933 (2)

H. L. J. Bäckström, Naturwiss. 21, 251 (1933).
[Crossref]

H. Alterthum and M. Reger, Chem. Fabrik 6, 283 (1933); cf. R. Rompe, Acta Phys. Polonica 5, 151 (1936).

1929 (1)

K. S. Gibson, “Spectral filters,” International Critical Tables, Vol.  5, p. 271 (1929).

1903 (1)

R. W. Wood, Phil. Mag. 5, 257 (1903).
[Crossref]

Alterthum, H.

H. Alterthum and M. Reger, Chem. Fabrik 6, 283 (1933); cf. R. Rompe, Acta Phys. Polonica 5, 151 (1936).

Bäckström, H. L. J.

H. L. J. Bäckström, Naturwiss. 21, 251 (1933).
[Crossref]

Bowen, E. J.

E. J. Bowen, J. Chem. Soc.76 (1935). Cf. Proc. Roy. Soc. A154, 349 (1936). See also, E. J. Bowen, The Chemical Aspects of Light, 2nd Ed. (Clarendon Press, Oxford, 1946). Appendices II and III.
[Crossref]

Davis, W.

R. E. Hunt and W. Davis, J. Am. Chem. Soc. 69, 1415 (1947).
[Crossref]

Dreisch, T.

Cf. Fig. 1, T. Dreisch and W. Trommer, Zeits. f. physik. Chemie B37, 37 (1937).

Gibson, K. S.

K. S. Gibson, “Spectral filters,” International Critical Tables, Vol.  5, p. 271 (1929).

Hunt, R. E.

R. E. Hunt and W. Davis, J. Am. Chem. Soc. 69, 1415 (1947).
[Crossref]

Lutz, K.

Cation X, named 2,7-dimethyl-3,6-diazacyclohepta-1,6-diene iodide. G. Schwarzenbach and K. Lutz, Helv. Chim. Acta 23, 1139 (1940). The authors give directions for preparation of the perchlorate; the iodide was used in our work.
[Crossref]

Reger, M.

H. Alterthum and M. Reger, Chem. Fabrik 6, 283 (1933); cf. R. Rompe, Acta Phys. Polonica 5, 151 (1936).

Schwarzenbach, G.

Cation X, named 2,7-dimethyl-3,6-diazacyclohepta-1,6-diene iodide. G. Schwarzenbach and K. Lutz, Helv. Chim. Acta 23, 1139 (1940). The authors give directions for preparation of the perchlorate; the iodide was used in our work.
[Crossref]

Trommer, W.

Cf. Fig. 1, T. Dreisch and W. Trommer, Zeits. f. physik. Chemie B37, 37 (1937).

Winther, Chr.

Chr. Winther, Zeits. f. Elektrochemie 43, 691 (1937).

Wood, R. W.

R. W. Wood, Phil. Mag. 5, 257 (1903).
[Crossref]

Chem. Fabrik (1)

H. Alterthum and M. Reger, Chem. Fabrik 6, 283 (1933); cf. R. Rompe, Acta Phys. Polonica 5, 151 (1936).

Helv. Chim. Acta (1)

Cation X, named 2,7-dimethyl-3,6-diazacyclohepta-1,6-diene iodide. G. Schwarzenbach and K. Lutz, Helv. Chim. Acta 23, 1139 (1940). The authors give directions for preparation of the perchlorate; the iodide was used in our work.
[Crossref]

International Critical Tables (1)

K. S. Gibson, “Spectral filters,” International Critical Tables, Vol.  5, p. 271 (1929).

J. Am. Chem. Soc. (1)

R. E. Hunt and W. Davis, J. Am. Chem. Soc. 69, 1415 (1947).
[Crossref]

J. Chem. Soc. (1)

E. J. Bowen, J. Chem. Soc.76 (1935). Cf. Proc. Roy. Soc. A154, 349 (1936). See also, E. J. Bowen, The Chemical Aspects of Light, 2nd Ed. (Clarendon Press, Oxford, 1946). Appendices II and III.
[Crossref]

Naturwiss. (1)

H. L. J. Bäckström, Naturwiss. 21, 251 (1933).
[Crossref]

Phil. Mag. (1)

R. W. Wood, Phil. Mag. 5, 257 (1903).
[Crossref]

Zeits. f. Elektrochemie (1)

Chr. Winther, Zeits. f. Elektrochemie 43, 691 (1937).

Zeits. f. physik. Chemie (1)

Cf. Fig. 1, T. Dreisch and W. Trommer, Zeits. f. physik. Chemie B37, 37 (1937).

Other (4)

Glass Color Filters (Corning Glass Works, Corning, New York, 1948), New Edition.

Glass Color Filters (Corning Glass Works, Corning, New York, 1942) (Old Edition, Form C-247-4-42).

In our use of the filter, little measurable change in transmission occurred upon prolonged exposure to the high pressure quartz mercury arc (the light first being passed through nickel sulfate and red purple corex).

Landolt-Börnstein, Physikalisch-Chemische Tabellen (Julius Springer, Berlin, 1935). Curve 141, p. 1379, Volume 111b.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Light transmission of aqueous solutions of inorganic salts, 2000 to 10,000A. (1) CoSO4·7H2O, 75 g/l, 1-cm path. (2) CoSO4·7H2O, 300 g/l, 1 cm. (3) CuSO4·5H2O, 100 g/l, 5 cm. (4) NiSO4·6H2O, 500 g/l, 1 cm. (5) KCr(SO4)2·12H2O, 150 g/l, 1 cm.

Fig. 2
Fig. 2

General ultraviolet-transmitting filters. Dotted curve: ultraviolet transmission of a 5.0-cm optical path of an aqueous solution containing 240 g/l of NiSO4·6H2O and 45.0 g/l of CoSO4·7H2O. Solid curves: ultraviolet transmission of Corning Glass filter c.s. 7-54 (9863 or 986, “red purple corex A”), 3.0 mm; circles: new filter; triangles: old filter (after exposure to the light of the AH6 high pressure mercury arc for over 300 hours).

Fig. 3
Fig. 3

Region-selecting filters. (1) K2CrO4, 0.200 g/l water, 1-cm path. (2) (cn), iodide in water, 20 mg/100 ml, 1 cm (a simple cyclic cyanine-like substance, c.f. reference 10). (3) 1,4-diphenylbutadiene (DPBD), 4.24 mg/100 ml ethyl ether, 1 cm.

Fig. 4
Fig. 4

High frequency cut-off filters. (1) Carbon tetrachloride, 0.5-cm path. (2) Potassium acid phthalate, 5.0 g/l water, 1 cm. (3) Naphthalene in isoöctane, 12.8 g/l, 1 cm. (4) (cn), iodide in water, 20 mg/100 ml, 1 cm (c.f. reference 10, and curve 2, Fig. 3).

Fig. 5
Fig. 5

Band-pass filter combinations for the ultraviolet. The combinations consist of the following components, the numbers corresponding to those given in Table I. A=(1+6+9). B=(2+7+10). C=(3+8+11+12). C′=(3 +8+11). D=(4+8+9+13). E=(5+14). Just above the wave-length scale is given a schematic representation of the persistent lines of the low pressure mercury arc. The letters just above these lines correspond to the combinations which will transmit the respective lines. See Section V of the text for specific details of the use of these filters and notes on “filter defects.”

Tables (1)

Tables Icon

Table I Filter—Combination Components.