Abstract

To determine the reflection from a two layer anti-reflection film on glass the ideas and terminology of network analysis are introduced. Those parts of network theory to be used are briefly reviewed. This theory is shown to provide a clear physical picture of the field changes which occur with varying film parameters. It is shown that there is a relation connecting these parameters which defines an optimum design for best bandwidth. This design yields a reflection curve having two points of zero reflection and in a typical case gives less than 0.005 reflectivity over a range extending well beyond the visible spectrum at both ends. If, because of physical limitations, the optimum proves to be unattainable, then the conditions for closest approach are outlined.

© 1948 Optical Society of America

Full Article  |  PDF Article
Related Articles
Multilayer Interference Filters with Narrow Stop Bands

Leo Young
Appl. Opt. 6(2) 297-315 (1967)

Transmission properties and effective electromagnetic parameters of double negative metamaterials

Peter Markoš and C. M. Soukoulis
Opt. Express 11(7) 649-661 (2003)

Synthesis of Multiple Antireflection Films over a Prescribed Frequency Band

Leo Young
J. Opt. Soc. Am. 51(9) 967-974 (1961)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (48)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription