Abstract

For many purposes the Wien radiation law is a sufficiently close approximation to the Planck equation. When it is not, the subtraction in the denominator of the Planck equation interferes with logarithmic calculation. It has been found possible to construct a table which can be entered with the negative of the exponent of the Wien equation, expressed in terms of common (Briggsian) logarithms: <i>c</i><sub>2</sub> lg<i>e</i>/(λ<i>T</i>), to get the logarithmic correction to four significant figures. Moreover, the same table can be used if successive approximations are necessary.

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Q. Adams and W. E. Forsythe, Denison Univ. Bulletin, J. Sci. Labs. 38, 52 (1943).
  2. E. Q. Adams, Rev. Sci. Inst. 4, 622 (1933).

1943

E. Q. Adams and W. E. Forsythe, Denison Univ. Bulletin, J. Sci. Labs. 38, 52 (1943).

1933

E. Q. Adams, Rev. Sci. Inst. 4, 622 (1933).

Adams, E. Q.

E. Q. Adams and W. E. Forsythe, Denison Univ. Bulletin, J. Sci. Labs. 38, 52 (1943).

E. Q. Adams, Rev. Sci. Inst. 4, 622 (1933).

Forsythe, W. E.

E. Q. Adams and W. E. Forsythe, Denison Univ. Bulletin, J. Sci. Labs. 38, 52 (1943).

Other

E. Q. Adams and W. E. Forsythe, Denison Univ. Bulletin, J. Sci. Labs. 38, 52 (1943).

E. Q. Adams, Rev. Sci. Inst. 4, 622 (1933).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.