Abstract

Thickness measurements of thin transparent coatings on thick transparent bases by reflection interferometry are made possible through use of an immersion medium of the same refractive index as the base to intensify interference. A convenient interferometer comprising three essential parts, a “pocket” spectroscope, an incandescent lamp, and a cylindrical immersion tank, is described. Its use for rapid, precise measurements of thickness of single and double layer coatings and films in the range of 0.2 to 50 microns is illustrated with spectra.

© 1947 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Friedman and L. S. Birks, Rev. Sci. Inst. 17, 99 (1946).
    [Crossref]
  2. Gunn and Scott, Nature 158, 621 (1946).
    [Crossref]
  3. Plessner, Nature 158, 915 (1946).
    [Crossref]
  4. R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), third edition, p. 192.
  5. H. W. Straub, Alien Property Custodian No. 334, 220 (May4, 1943).
  6. A. H. Pfund, J. Opt. Soc. Am. 36, 95 (1946).
    [Crossref] [PubMed]
  7. Jenkins and White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc.New York, 1937), first edition, p. 83.
  8. F. W. Billmeyer, Phys. Rev. 71, 489 (1947).
  9. A. H. Pfund, J. Opt. Soc. Am. 31, 679 (1941).
    [Crossref]

1947 (1)

F. W. Billmeyer, Phys. Rev. 71, 489 (1947).

1946 (4)

A. H. Pfund, J. Opt. Soc. Am. 36, 95 (1946).
[Crossref] [PubMed]

H. Friedman and L. S. Birks, Rev. Sci. Inst. 17, 99 (1946).
[Crossref]

Gunn and Scott, Nature 158, 621 (1946).
[Crossref]

Plessner, Nature 158, 915 (1946).
[Crossref]

1943 (1)

H. W. Straub, Alien Property Custodian No. 334, 220 (May4, 1943).

1941 (1)

Billmeyer, F. W.

F. W. Billmeyer, Phys. Rev. 71, 489 (1947).

Birks, L. S.

H. Friedman and L. S. Birks, Rev. Sci. Inst. 17, 99 (1946).
[Crossref]

Friedman, H.

H. Friedman and L. S. Birks, Rev. Sci. Inst. 17, 99 (1946).
[Crossref]

Gunn,

Gunn and Scott, Nature 158, 621 (1946).
[Crossref]

Jenkins,

Jenkins and White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc.New York, 1937), first edition, p. 83.

Pfund, A. H.

Plessner,

Plessner, Nature 158, 915 (1946).
[Crossref]

Scott,

Gunn and Scott, Nature 158, 621 (1946).
[Crossref]

Straub, H. W.

H. W. Straub, Alien Property Custodian No. 334, 220 (May4, 1943).

White,

Jenkins and White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc.New York, 1937), first edition, p. 83.

Wood, R. W.

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), third edition, p. 192.

Alien Property Custodian No. 334 (1)

H. W. Straub, Alien Property Custodian No. 334, 220 (May4, 1943).

J. Opt. Soc. Am. (2)

Nature (2)

Gunn and Scott, Nature 158, 621 (1946).
[Crossref]

Plessner, Nature 158, 915 (1946).
[Crossref]

Phys. Rev. (1)

F. W. Billmeyer, Phys. Rev. 71, 489 (1947).

Rev. Sci. Inst. (1)

H. Friedman and L. S. Birks, Rev. Sci. Inst. 17, 99 (1946).
[Crossref]

Other (2)

R. W. Wood, Physical Optics (The Macmillan Company, New York, 1934), third edition, p. 192.

Jenkins and White, Fundamentals of Physical Optics (McGraw-Hill Book Company, Inc.New York, 1937), first edition, p. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

F. 1
F. 1

Location of interference bands in the visible spectrum of light reflected from a coating of refractive index 1.46 (μ1) on a base of refractive index 1.50 (μ0), viewed at an angle of 45°(ϕ). Intersection of the family of sloping lines (t = nkλ) with horizontal lines shows value of λ at reflection minima.

F. 2
F. 2

Interferometer.

F. 3
F. 3

Optical elements of interferometer.

F. 4
F. 4

Photographs of reflection spectra of various laminae.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 μ 1 t cos θ = n λ ,
sin θ = ( μ 0 / μ 1 ) sin ϕ ,
cos θ = [ 1 ( μ 0 μ 1 sin ϕ ) 2 ] 1 2 .
2 μ 1 t [ 1 ( μ 0 μ 1 sin ϕ ) 2 ] 1 2 = n λ .
k = 1 / { 2 μ 1 [ 1 ( μ 0 μ 1 sin ϕ ) 2 ] 1 2 } ;
t / k λ i = n i
t / k λ s = n s
( n s n i ) = t / k [ ( 1 / λ s ) ( 1 / λ i ) ] ,
t = ( n s n i ) k [ ( λ s λ i ) / ( λ i λ s ) ] .
t = k [ ( λ s λ i ) / ( λ i λ s ) ] .