Abstract

The effective solar radiation intensity, as observed through the atmospheric window between 16 mu and 24 mu, is determined by comparison with the observed radiation intensity of the earth’s surface (thermocouple) below 13 mu. The ratio of the effective value to the value calculated for T=6000°K is the transparency of the atmosphere to solar radiation within the interval 16 mu−24 mu. Opacity in this spectral region is due largely to water vapor and carbon dioxide. Provisional estimates of percent transmission, probably lower limits, are found to be:

DatePrecipitable water vaporSpectral intervalPercent transmission
30 Sept. ’411 cm16 mu–19 mu3.3%
24 Nov. ’411 mm16 mu–19 mu14.3%
24 Nov. ’411 mm16 mu–22 mu12.6%
The net loss of energy by the earth’s surface, through the 16-mu–24-mu window, is small, but probably not negligible from a meteorological point of view.

© 1947 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Arthur Adel, Ap. J. 96, 239 (1942).For a brief history of the problem see:(a)G. C. Southworth, J. Frank. Inst. 239, 285 (1945);(b)Annals of the Astrophysical Observatory of the Smithsonian Institution;(c)J. Strong, J. Frank. Inst. 232, 1 (1941).
    [Crossref]
  2. Arthur Adel and C. O. Lampland, Ap. J. 91, 1 (1940);Ap. J.481 (1940).
    [Crossref]
  3. Arthur Adel, Ap. J. 103, 19 (1946).
    [Crossref]

1946 (1)

Arthur Adel, Ap. J. 103, 19 (1946).
[Crossref]

1942 (1)

Arthur Adel, Ap. J. 96, 239 (1942).For a brief history of the problem see:(a)G. C. Southworth, J. Frank. Inst. 239, 285 (1945);(b)Annals of the Astrophysical Observatory of the Smithsonian Institution;(c)J. Strong, J. Frank. Inst. 232, 1 (1941).
[Crossref]

1940 (1)

Arthur Adel and C. O. Lampland, Ap. J. 91, 1 (1940);Ap. J.481 (1940).
[Crossref]

Adel, Arthur

Arthur Adel, Ap. J. 103, 19 (1946).
[Crossref]

Arthur Adel, Ap. J. 96, 239 (1942).For a brief history of the problem see:(a)G. C. Southworth, J. Frank. Inst. 239, 285 (1945);(b)Annals of the Astrophysical Observatory of the Smithsonian Institution;(c)J. Strong, J. Frank. Inst. 232, 1 (1941).
[Crossref]

Arthur Adel and C. O. Lampland, Ap. J. 91, 1 (1940);Ap. J.481 (1940).
[Crossref]

Lampland, C. O.

Arthur Adel and C. O. Lampland, Ap. J. 91, 1 (1940);Ap. J.481 (1940).
[Crossref]

Ap. J. (3)

Arthur Adel, Ap. J. 96, 239 (1942).For a brief history of the problem see:(a)G. C. Southworth, J. Frank. Inst. 239, 285 (1945);(b)Annals of the Astrophysical Observatory of the Smithsonian Institution;(c)J. Strong, J. Frank. Inst. 232, 1 (1941).
[Crossref]

Arthur Adel and C. O. Lampland, Ap. J. 91, 1 (1940);Ap. J.481 (1940).
[Crossref]

Arthur Adel, Ap. J. 103, 19 (1946).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

KBr solar spectrum observed at Flagstaff, Arizona, September 30, 1941, through one centimeter of precipitable water vapor.

F. 2
F. 2

KBr solar spectrum observed at Flagstaff, Arizona, November 24, 1941, through one millimeter of precipitable water vapor. Note scale change near 20 mu.

F. 3
F. 3

KBr spectrum of thermocouple (net emission) observed at Flagstaff, Arizona, November 3, 1941.

Tables (1)

Tables Icon

Table I

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J ( 16 mu 19 mu ) 6000 ° K = 4.80 × 10 6 ergs / cm 2 / sec , J ( 16 mu 22 mu ) 6000 ° K = 7.37 × 10 6 ergs / cm 2 / sec .