Abstract

A technique has been developed for the evaporation of bismuth and of antimony upon thin cellulose nitrate so that the metals have comparatively low electrical resistivities and comparatively high thermal e.m.f.’s. A procedure has been developed for making bismuth-antimony radiation thermopiles in which units of 50 thermal junctions have a receiving area of ~0.11 cm2 and a resistance of ~70 ohms. These units are called “folded thermopiles.” The response of several folded thermopiles of different design operated at atmospheric pressure has been studied over a range of frequencies. The “folded” thermopiles are faster than any thermopiles reported heretofore, yet the response is greater for all frequencies above 5 cycles per second than for evaporated thermocouples operated in a vacuum. The thermopiles are rugged, relatively free of microphonics, and show very little noise in addition to “Johnson noise.”

© 1946 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Harris and A. C. Scholp, J. Opt. Soc. Am. 30, 519 (1940).
    [Crossref]
  2. A. Stockfleth, M.I.T. Ph.D. Thesis (November, 1942).
  3. L. C. Roess and E. N. Dacus, Rev. Sci. Inst. 16, 164 (1945).
    [Crossref]
  4. L. Harris, J. App. Phys. 17, 757 (1946).
    [Crossref]
  5. W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
    [Crossref]
  6. H. C. Burger and P. H. Van Cittert, Zeits. f. Physik 66, 210 (1930).
    [Crossref]

1946 (1)

L. Harris, J. App. Phys. 17, 757 (1946).
[Crossref]

1945 (1)

L. C. Roess and E. N. Dacus, Rev. Sci. Inst. 16, 164 (1945).
[Crossref]

1940 (1)

1930 (2)

W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
[Crossref]

H. C. Burger and P. H. Van Cittert, Zeits. f. Physik 66, 210 (1930).
[Crossref]

Burger, H. C.

H. C. Burger and P. H. Van Cittert, Zeits. f. Physik 66, 210 (1930).
[Crossref]

Bussem, W.

W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
[Crossref]

Dacus, E. N.

L. C. Roess and E. N. Dacus, Rev. Sci. Inst. 16, 164 (1945).
[Crossref]

Gross, F.

W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
[Crossref]

Harris, L.

Hermann, K.

W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
[Crossref]

Roess, L. C.

L. C. Roess and E. N. Dacus, Rev. Sci. Inst. 16, 164 (1945).
[Crossref]

Scholp, A. C.

Stockfleth, A.

A. Stockfleth, M.I.T. Ph.D. Thesis (November, 1942).

Van Cittert, P. H.

H. C. Burger and P. H. Van Cittert, Zeits. f. Physik 66, 210 (1930).
[Crossref]

J. App. Phys. (1)

L. Harris, J. App. Phys. 17, 757 (1946).
[Crossref]

J. Opt. Soc. Am. (1)

Rev. Sci. Inst. (1)

L. C. Roess and E. N. Dacus, Rev. Sci. Inst. 16, 164 (1945).
[Crossref]

Zeits. f. Physik (2)

W. Bussem, F. Gross, and K. Hermann, Zeits. f. Physik 64, 537 (1930).
[Crossref]

H. C. Burger and P. H. Van Cittert, Zeits. f. Physik 66, 210 (1930).
[Crossref]

Other (1)

A. Stockfleth, M.I.T. Ph.D. Thesis (November, 1942).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Strip holder.

Fig. 2
Fig. 2

Evaporation frame.

Fig. 2a
Fig. 2a

Evaporation frame.

Fig. 4
Fig. 4

Response of thermopiles to interrupted radiation. a, b, c, d, refer to thermopiles a, b, c, d, respectively.

Tables (3)

Tables Icon

Table II Physical dimensions and properties of thermopiles.

Tables Icon

Table III Response of thermopiles to steady radiation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

V a . c . = k n m ( G / L ) 1 y ( f , τ ) ,
τ = heat capacity of receiver ( calories / degree / cm 2 ) heat lost by receiver in unit time ( calories / degree / cm 2 / sec . ) .
V d . c . = n m G L ,