## Abstract

No abstract available.

• View by:
• |
• |
• |

### Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

### Figures (5)

Fig. 1

Six types of reflectance curves.

Fig. 2

Celotex acoustical tile, natural color. —— experimental curve, – – – analytic approximation, Eq. (1).

Fig. 3

Masonite wall board. —— experimental curve, – – – analytic approximation, Eq. (2), m=6.

Fig. 4

White samples. No. 420, flat-tone white paint; No. 426, semi-luster white paint; No. 49, acoustical tile painted white. The numbers correspond to those in Reference 1.

Fig. 5

Blue paint (Sample No. 461). —— experimental curve, 0 calculated points using 7-term polynomial.

### Tables (5)

Table I Factors for 7-term polynomial representation.

Table II-A Coefficients for analytic representation by power functions, illuminant A′ (T=2842°K).

Table II-B Coefficients for analytic representation by power functions, illuminant B′ (T=7000°K).

Table III Direct integration method. Values of Fk, to be used in Eq. (10).

Table IV Example of direct computation of X, Y, Z, No. 151 green ceramic tile, Planckian radiation (T=2842°K).

### Equations (14)

$ρ ( λ ) = A + B λ ,$
$ρ ( λ ) = A + B λ m .$
$ρ ( λ ) = A - B λ - m .$
$ρ ( λ ) = K 0 + K 1 λ + K 2 λ 2 + ⋯ + K 6 λ 6 .$
$ρ ( λ ) / ρ 0 = 0.0388 + 1.466 λ 6 .$
$K m = ∑ k = 0 6 C m k ρ ( λ k ) ,$
$X = ∫ 0 ∞ ρ ( λ ) x ¯ ( λ ) J ( λ ) d λ , Y = ∫ 0 ∞ ρ ( λ ) y ¯ ( λ ) J ( λ ) d λ , Z = ∫ 0 ∞ ρ ( λ ) z ¯ ( λ ) J ( λ ) d λ ,$
$L = ∫ 0 ∞ ρ ( λ ) w ( λ ) J ( λ ) d λ = A C 1 K m Γ ( p + 4 - m ) ( q + n C 2 / T ) p + 4 - m ,$
$ρ ( λ ) = K m λ m , J ( λ ) = C 1 λ 5 exp ( - n C 2 / λ T ) ,$
$w ( λ ) = A exp ( - p / λ ) / λ q .$
$L = A C 1 ∑ m = 0 k - 1 ∑ n = 1 ∞ K m Γ ( p + 4 - m ) ( q + n C 2 / T ) p + 4 - m .$
$K 0 = A = - 0.295 , K 1 = B = 1.350 ;$
$X = 97871 ( - 0.295 ) + 58214 ( 1.350 ) = 49717 , Y = 89030 ( - 0.295 ) + 50837 ( 1.350 ) = 42367 , Z = 31808 ( - 0.295 ) + 14680 ( 1.350 ) = 10434.$
$L = ∑ k = 0 6 ρ ( λ k ) F k ,$