Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
    [Crossref]
  2. B. W. Beadle and H. R. Kraybill, J. Am. Chem. Soc. 66, 1232 (1944).
    [Crossref]
  3. T. F. Bradley and D. Richardson, Ind. Eng. Chem. 34, 237 (1942).
    [Crossref]
  4. L. J. van der Hulst, Rec. Trav. Chim. des Pays-Bas 54, 639, 644 (1935).
    [Crossref]
  5. A. Dingwall and J. C. Thomson, J. Am. Chem. Soc. 56, 899 (1934).
    [Crossref]
  6. H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
    [Crossref]
  7. W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
    [Crossref]
  8. J. P. Kass, Protective and Decorative Coatings, edited by J. J. Matiello (John Wiley and Sons, New York, 1944), Chap. 12.
  9. Kass (reference 8) gives 115 at 232 mμ for both 9,11 and 10,12 linoleic acids; Kerns, Belkengren, Clark, and Miller, J. Opt. Soc. Am. 31, 271 (1941) report 116 at 232 mμ for 10,12 linoleic acid; our measurements with a comparator on van der Hulst’s curves (reference 4, Fig. 3, page 641 and Fig. 6, page 649) indicate values of 119 and 126 for 9,11 linoleic acid in hexane.
    [Crossref]
  10. Kass (reference 8) reports a value of 215 at 268 mμ for both β- and pseudo-eleostearic acids; Dingwall and Thomson (reference 5) about 189 for β-eleostearic acid in ethanol; our measurements with a comparator on van der Hulst’s curve (reference 4, Fig. 5, page 642) indicates about 194 for β-eleostearic acid in hexane.
  11. Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).
  12. D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).
  13. In the absence of detailed data on the conjugated tetraene acid isolated, from isomerized arachidonic acid (reference 12), this constant was tentatively evaluated from data of Beadle and Kraybill (reference 2) for isomerized arachidonic acid. The authors are indebted to B. W. Beadle for the necessary data for this calculation.
  14. Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
    [Crossref]
  15. Synthetic absolute methyl alcohol is also a suitable solvent. We are indebted to E. L. Borg of the United States Rubber Company for suggesting its use.
  16. It is essential that all samples saponify or dissolve within one to two minutes after being dropped into the reaction tube. Animal fats and fatty acids saponify within a minute. Monohydric esters saponify less readily. This may be remedied by adding 0.1 percent of pure palmitic or stearic acids to the KOH-glycerol reagent after the preliminary heating at 200°. In the case of soap samples, prompt solution is accomplished by wetting the sample with 3 drops of water or glycerol, stirring it to a homogeneous mass, and dropping sample and glass stirring rod into the reaction tube.
  17. B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

1944 (3)

B. W. Beadle and H. R. Kraybill, J. Am. Chem. Soc. 66, 1232 (1944).
[Crossref]

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
[Crossref]

1943 (1)

J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
[Crossref]

1942 (2)

D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).

T. F. Bradley and D. Richardson, Ind. Eng. Chem. 34, 237 (1942).
[Crossref]

1938 (1)

H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
[Crossref]

1935 (1)

L. J. van der Hulst, Rec. Trav. Chim. des Pays-Bas 54, 639, 644 (1935).
[Crossref]

1934 (1)

A. Dingwall and J. C. Thomson, J. Am. Chem. Soc. 56, 899 (1934).
[Crossref]

Ault, W. C.

B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

Baltes, J.

H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
[Crossref]

Beadle, B. W.

B. W. Beadle and H. R. Kraybill, J. Am. Chem. Soc. 66, 1232 (1944).
[Crossref]

Bradley, T. F.

T. F. Bradley and D. Richardson, Ind. Eng. Chem. 34, 237 (1942).
[Crossref]

Brice, B. A.

B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

Brode, W. R.

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).

Brown, J. B.

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).

Dingwall, A.

A. Dingwall and J. C. Thomson, J. Am. Chem. Soc. 56, 899 (1934).
[Crossref]

Frankel, J.

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

Freeman, A. F.

Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).

Funke, S.

H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
[Crossref]

Graff, M. M.

Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
[Crossref]

Heinzelman, D. C.

Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).

Kass,

Kass (reference 8) gives 115 at 232 mμ for both 9,11 and 10,12 linoleic acids; Kerns, Belkengren, Clark, and Miller, J. Opt. Soc. Am. 31, 271 (1941) report 116 at 232 mμ for 10,12 linoleic acid; our measurements with a comparator on van der Hulst’s curves (reference 4, Fig. 3, page 641 and Fig. 6, page 649) indicate values of 119 and 126 for 9,11 linoleic acid in hexane.
[Crossref]

Kass (reference 8) reports a value of 215 at 268 mμ for both β- and pseudo-eleostearic acids; Dingwall and Thomson (reference 5) about 189 for β-eleostearic acid in ethanol; our measurements with a comparator on van der Hulst’s curve (reference 4, Fig. 5, page 642) indicates about 194 for β-eleostearic acid in hexane.

Kass, J. P.

J. P. Kass, Protective and Decorative Coatings, edited by J. J. Matiello (John Wiley and Sons, New York, 1944), Chap. 12.

Kaufmann, H. P.

H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
[Crossref]

Kraybill, H. R.

B. W. Beadle and H. R. Kraybill, J. Am. Chem. Soc. 66, 1232 (1944).
[Crossref]

J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
[Crossref]

Mitchell, J. H.

J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
[Crossref]

Mowry, D. T.

D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).

O’Connor, R. T.

Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
[Crossref]

Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).

Pack, F. C.

Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).

Patterson, J. W.

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

Richardson, D.

T. F. Bradley and D. Richardson, Ind. Eng. Chem. 34, 237 (1942).
[Crossref]

Schaeffer, B. B.

B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

Skau, E. L.

Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
[Crossref]

Swain, M. L.

B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

Thomson, J. C.

A. Dingwall and J. C. Thomson, J. Am. Chem. Soc. 56, 899 (1934).
[Crossref]

van der Hulst, L. J.

L. J. van der Hulst, Rec. Trav. Chim. des Pays-Bas 54, 639, 644 (1935).
[Crossref]

Zscheile, F. P.

J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
[Crossref]

Fette u. Seifen (1)

H. P. Kaufmann, J. Baltes, and S. Funke, Fette u. Seifen 45, 302 (1938).
[Crossref]

Ind. Eng. Chem. (1)

T. F. Bradley and D. Richardson, Ind. Eng. Chem. 34, 237 (1942).
[Crossref]

Ind. Eng. Chem. Anal. Ed. (3)

J. H. Mitchell, H. R. Kraybill, and F. P. Zscheile, Ind. Eng. Chem. Anal. Ed. 15, 1 (1943).
[Crossref]

W. R. Brode, J. W. Patterson, J. B. Brown, and J. Frankel, Ind. Eng. Chem. Anal. Ed. 16, 77 (1944).
[Crossref]

Neohexane, Phillips Petroleum Company, technical grade. Isooctane (2,2,4-trimethylpentane), Rohm and Haas, Bureau of Standards certified grade, is also a satisfactory solvent. The transparency of these solvents was improved greatly by passage through a column of silica gel; see M. M. Graff, R. T. O’Connor, and E. L. Skau, Ind. Eng. Chem. Anal. Ed. 16, 556 (1944); also , p. 37 (May1944).
[Crossref]

J. Am. Chem. Soc. (2)

A. Dingwall and J. C. Thomson, J. Am. Chem. Soc. 56, 899 (1934).
[Crossref]

B. W. Beadle and H. R. Kraybill, J. Am. Chem. Soc. 66, 1232 (1944).
[Crossref]

J. Biol. Chem. (1)

D. T. Mowry, W. R. Brode, and J. B. Brown, J. Biol. Chem. 142, 671 (1942).

Rec. Trav. Chim. des Pays-Bas (1)

L. J. van der Hulst, Rec. Trav. Chim. des Pays-Bas 54, 639, 644 (1935).
[Crossref]

Other (8)

J. P. Kass, Protective and Decorative Coatings, edited by J. J. Matiello (John Wiley and Sons, New York, 1944), Chap. 12.

Kass (reference 8) gives 115 at 232 mμ for both 9,11 and 10,12 linoleic acids; Kerns, Belkengren, Clark, and Miller, J. Opt. Soc. Am. 31, 271 (1941) report 116 at 232 mμ for 10,12 linoleic acid; our measurements with a comparator on van der Hulst’s curves (reference 4, Fig. 3, page 641 and Fig. 6, page 649) indicate values of 119 and 126 for 9,11 linoleic acid in hexane.
[Crossref]

Kass (reference 8) reports a value of 215 at 268 mμ for both β- and pseudo-eleostearic acids; Dingwall and Thomson (reference 5) about 189 for β-eleostearic acid in ethanol; our measurements with a comparator on van der Hulst’s curve (reference 4, Fig. 5, page 642) indicates about 194 for β-eleostearic acid in hexane.

Instability of preparations of α-eleostearic acid have been discussed by R. T. O’Connor, D. C. Heinzelman, A. F. Freeman, and F. C. Pack, Ind. Eng. Chem. Anal. Ed. (in press).

In the absence of detailed data on the conjugated tetraene acid isolated, from isomerized arachidonic acid (reference 12), this constant was tentatively evaluated from data of Beadle and Kraybill (reference 2) for isomerized arachidonic acid. The authors are indebted to B. W. Beadle for the necessary data for this calculation.

Synthetic absolute methyl alcohol is also a suitable solvent. We are indebted to E. L. Borg of the United States Rubber Company for suggesting its use.

It is essential that all samples saponify or dissolve within one to two minutes after being dropped into the reaction tube. Animal fats and fatty acids saponify within a minute. Monohydric esters saponify less readily. This may be remedied by adding 0.1 percent of pure palmitic or stearic acids to the KOH-glycerol reagent after the preliminary heating at 200°. In the case of soap samples, prompt solution is accomplished by wetting the sample with 3 drops of water or glycerol, stirring it to a homogeneous mass, and dropping sample and glass stirring rod into the reaction tube.

B. A. Brice, M. L. Swain, B. B. Schaeffer, and W. C. Ault, Oil and Soap (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1–2
Fig. 1–2

Fig. 1. Ultraviolet absorption curves for ethanol solutions of purified β-eleostearic acid and 10,12 linoleic acid standards; neohexane solutions of purified methyl oleate and methyl stearate, and typical oil and fat samples containing small proportions of conjugated fatty acid glycerides. Slit widths 1.5 to 2 mμ.

Fig. 3
Fig. 3

Absorption curves: A, purified β-eleostearic acid 2 in ethanol; B, tallow 16 in neohexane; C, calculated curve of “background” absorption, i.e., tallow 16 minus 0.009 percent β-eleostearic acid.

Fig. 4
Fig. 4

Absorption curves for 1.30N KOH ethylene glycol and 11 percent KOH-glycerol solutions heated in the presence of air for 25 minutes at 180°C. Spectral densities are for 1-cm layers of 10 percent solutions in absolute ethanol, compared with a 1-cm layer of absolute ethanol.

Fig. 5
Fig. 5

Specific extinction coefficients in absolute ethanol for 0.1-gram samples of purified linoleic and linolenic acids heated for various lengths of time at 180°C in 11 percent KOH-glycerol solution.

Fig. 6
Fig. 6

Specific extinction coefficients in absolute ethanol for conjugated fatty acids and tung oil before and after heating for various lengths of time at 180°C in KOH-glycerol solution.

Tables (6)

Tables Icon

Table I Ultraviolet absorption data for purified fatty acids and esters: observed or reported values for wave-length λmax and specific extinction coefficient k at absorption maximum used; values tentatively adopted as standard in analysis for conjugated fatty acid constituents; and ratio of k value at λmax to average value of k at λmax+6 mμ and λmax−6 mμ, i.e., kk.

Tables Icon

Table II Absorption and reproducibility for 1.30N KOH-ethylene glycol and 11 percent KOH-glycerol solutions heated in the presence of air for 25 minutes at 180°C. Spectral densities for 10 percent solutions in absolute ethanol, 1 cm at 260 mμ, 5 cm at 316 mμ (i.e., thicknesses and concentrations commonly used for analysis of animal fats) vs. equal layers of absolute ethanol. Each group of six samples was run simultaneously in the constant temperature bath.

Tables Icon

Table III Specific extinction coefficients for alkali-isomerized pure polyunsaturated fatty acids.

Tables Icon

Table IV Specific extinction coefficients in ethanol, and wave-lengths of absorption maxima for conjugated fatty materials before (k) and after (k′) heating for 30 minutes at 180°C in KOH-glycerol solution. The ratio k′/k gives approximately the proportion of conjugated material undestroyed by the treatment.

Tables Icon

Table V Analysis of tallow 15 for polyunsaturated fatty acids by different methods. [(a), (b), (c) were isomerized in KOH-glycerol; (d) was isomerized in KOH-ethylene glycol (no corrections made).]

Tables Icon

Table VI Analysis of miscellaneous fatty materials for polyunsaturated constituents. Effect of variations in isomerization medium, size of sample, and temperature; reproducibility of results; and analysis of known mixtures.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

k = D / b c = ( - log T ) / b c ,
k 2 = k 232 - 0.07 - for fats and esters ,
k 2 = k 232 - 0.03 - for soaps and acids ,
k 3 = 2.8 [ k 268 - 1 2 ( k 262 + k 274 ) ] ,
k 4 = 2.5 [ k 316 - 1 2 ( k 310 + k 322 ) ] ,
C 2 = 100 k 2 / 119 ,
C 3 = 100 k 3 / 214 ,
C 4 = 100 k 4 / 220 ,
k 2 = k 232 - k 232 + 0.04 for fats and esters ,
k 2 = k 232 - k 232             for soaps and acids ,
k 3 = 4.1 [ k 268 - 1 2 ( k 262 + k 274 ) ] ,
k 3 = k 3 - k 3 ,
k 4 = 2.5 [ k 316 - 1 2 ( k 310 + k 322 ) ] ,
k 4 = k 4 - k 4 ,
x = 1.125 k 2 - 1.27 k 3 + 0.04 k 4 ,
y = 1.87 k 3 - 4.43 k 4 ,
z = 4.43 k 4 ,