Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Slussareff, J. Phys. U.S.S.R. 4, No. 6, 537 (1941).
  2. R. Straubel, Physik. Zeits. 4, 114 (1902–03).
  3. R. Clausius, The Mechanical Theory of Heat (The Macmillan Company, London, 1879), p. 322.
  4. Reference 1. It was considered useful to give a more detailed discussion of these examples.
  5. F. Washer, , Nat. Bur. Stand.

1941 (1)

G. Slussareff, J. Phys. U.S.S.R. 4, No. 6, 537 (1941).

Clausius, R.

R. Clausius, The Mechanical Theory of Heat (The Macmillan Company, London, 1879), p. 322.

Slussareff, G.

G. Slussareff, J. Phys. U.S.S.R. 4, No. 6, 537 (1941).

Straubel, R.

R. Straubel, Physik. Zeits. 4, 114 (1902–03).

Washer, F.

F. Washer, , Nat. Bur. Stand.

J. Phys. U.S.S.R. (1)

G. Slussareff, J. Phys. U.S.S.R. 4, No. 6, 537 (1941).

Physik. Zeits. (1)

R. Straubel, Physik. Zeits. 4, 114 (1902–03).

Other (3)

R. Clausius, The Mechanical Theory of Heat (The Macmillan Company, London, 1879), p. 322.

Reference 1. It was considered useful to give a more detailed discussion of these examples.

F. Washer, , Nat. Bur. Stand.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

d Φ = B · d f 1 cos θ 1 d Ω 1             ( Lambert ' s law ) ,
d Φ = B · d f cos W · d Ω .
d Φ = B d f cos W d Ω ,
B · d f · cos W · d Ω = B d f cos W d Ω .
n 2 d f · d Ω cos θ = n 2 d f d Ω cos θ ,
n 2 d f · d Ω cos θ = n ¯ 2 d f ¯ · d Ω ¯ cos θ ¯ .
n ¯ 2 d f ¯ cos θ ¯ · d Ω ¯ = n 2 d f cos θ d Ω .
n 2 d f cos θ d Ω = n 2 d f cos θ d Ω .
d f · cos W · d Ω = d f cos W d Ω .
B = B .
B · d f cos W · d Ω
B · d f cos W d Ω .
d Ω = S cos W ( e / cos W ) 2 .
d Ω = S cos W ( e / cos W ) 2 .
d f · cos W · S · cos W ( e / cos W ) 2 = d f cos W · S cos W ( e / cos W ) 2 ,
S S = d f d f · cos 4 W cos 4 W · e 2 e 2 .
S = C ( cos W cos W ) 4 .
M = ( d f / d f ) 1 2 .
m = F / x             ( Gaussian magnification ) ,
m p = F / b             ( paraxial magnification of the pupils ) .
e = b - x ,
e = F ( 1 / m p - 1 / m ) = F m - m p m m p .
S S = cos 4 W cos 4 W e 2 F 2 ( m p m - m p ) 2 .
S S = e 2 F 2 · cos 4 W cos 4 W ( for an object at infinity ) .
S S = ( e F ) 2 .
E = B d f d f cos W · d Ω = B · 1 M 2 S cos 4 W e 2 .
d f d f · 1 e 2 = 1 F 2 .
E = B S cos 4 W F 2 ( object at infinity ) .
E = B d f d f cos W d Ω ,
E = B S cos 4 W e 2 .
E = E 0 cos 4 W ,
E = E 0 cos 4 W .
S cos 4 W e 2 = S cos 4 W F 2 = constant ,
S = S · e 2 F 2 · cos 4 W cos 4 W ,
S 0 = S e 2 F 2 .
S = S 0 cos 4 W cos 4 W .
E = B S 0 e 2 cos 4 W cos 4 W cos 4 W ,
E 0 = B S 0 e 2 .
E = E 0 ( cos 4 W cos 4 W ) · cos 4 W .
S F 2 · cos 4 W = S e 2 cos 4 W = S e 2 ,
d Ω = S F 2 cos 4 W ,
E = B S e 2 = B · d Ω = B S F 2 cos 4 W .
S = S ( cos 4 W cos 4 W ) F 1 2 e 1 2 ,
E = B S cos 4 W F 2 .
E = B S F 1 2 F 2 e 1 2 · cos 4 W .